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What is Machine Learning?

The emphasis of machine learning is on devising automatic
methods that perform a given task based on what was experienced
in the past.

Here are several examples :

• optical character recognition : categorize images of
handwritten characters by the letters represented

• topic spotting : categorize news articles (say) as to whether
they are about politics, sports, entertainment, etc.

• medical diagnosis : diagnose a patient as a sufferer or
non-sufferer of some disease

• customer segmentation : dividing a customer base into groups
of individuals that are similar in specific ways relevant to
marketing (such as gender, interests, spending habits)

• fraud detection : identify credit card transactions (for instance)
which may be fraudulent in nature

April 5,2016 3
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Typical tasks of machine learning
Supervised learning :

• Prediction : use historical data for predicting future values
• Classification : identifying to which of a set of classes a new

observation belongs, on the basis of a training set of data
containing observations whose class membership is known

• Ranking : construction of ranking models for information
retrieval systems

Unsupervised learning :

• Outlier detection : detecting a few observations that deviate so
much from other observations as to arouse suspicion that it
was generated by a different mechanism

• Clustering : grouping a set of objects into homogeneous groups
based on some similarity measure

• Dimensionality reduction : mapping of data to a lower
dimensional space such that uninformative variance in the
data is discarded

April 5,2016 4
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Outline

� Introduction to clustering

� K-means and partitioning around medoids

• Theoretical background
• R code
• An example

� Gaussian mixtures and EM algorithm

• Theoretical background
• R code
• An example

� Hierarchical Clustering

• Theoretical background
• R code
• An example
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Introduction to clustering
Main objective

The goal of clustering analysis is to find high-quality clusters
such that the inter-cluster similarity is low and the intra-cluster
similarity is high.
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Introduction to clustering
The general diagram
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Introduction to clustering
The general diagram

End User

Done by the Data Scientist

  training 
examples

clustering 
algorithm

clustering 
     rule

new 
example

 identifier of the 
cluster to which 

the example 
is assigned.

In general, there is no objective measure of quality for a clustering
algorithm. The satisfaction of the end-user is perhaps the best man-
ner of evaluation.
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K-means clustering
Notation

• We are given n examples represented as a p-vector with
real-values entries :

X1, . . . ,Xn ∈ Rp, Xi =

xi1...
xip

 .
• We denote by ‖Xi − Xj‖ the (Euclidean) distance between two

examples :

‖Xi − Xj‖2 =

p∑
`=1

(xi,` − xj,`)
2

• For a set G, subset of {1, . . . ,n}, we denote by XG the average
of the examples Xi corresponding to i ∈ G, that is

XG =
1

|G|
∑
i∈G

Xi.

April 5,2016 9
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K-means clustering
Definition of the method

• Main idea : A good clustering algorithm divides the sample into
K groups such that the variance within each group is mall.

• Mathematically speaking, this corresponds to solving with
respect to G1, . . . ,GK ⊂ {1, . . . ,n} and C1, . . . ,CK ∈ Rp the
following optimisation problem :

min
G1,...,GK

min
C1,...,CK

K∑
k=1

∑
i∈Gk

‖Xi − Ck‖2︸ ︷︷ ︸
Ψ(G1:K ,C1:K)

,

where G1, . . . ,GK runs over all possible partitions of {1, . . . ,n}.
• Important remark : the minimization should be done for a fixed

value of K (prescribed number of clusters), otherwise the
solution is obvious (and meaningless), isn’t it ?

April 5,2016 10
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K-means clustering
How to minimize the cost?

• Cost function : Ψ(G1:K ,C1:K) =
∑K

k=1

∑
i∈Gk
‖Xi − Ck‖2 is hard to

minimize. It is a combinatorial optimization problem which is
known to be NP-hard.

• Local minimum : finding a local minimum is easy.

Step 1 For fixed centers C1:K the minimizer of Ψ(G1:K ,C1:K) w.r.t.
G1:K can be easily computed :

� Gk contains all the points Xi for which the closest point in
the set {C1, . . . ,CK} is Ck.

Step 2 For fixed groups G1:K , the minimizer of Ψ(G1:K ,C1:K) w.r.t.
C1:K can be easily computed :

� Ck = XGk .

• Iterative algorithm : initialize at some C1:K and then
alternate between the two aforementioned steps until
the convergence.

April 5,2016 11
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K-means clustering
Alternating minimization

An illustrative example :
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K-means clustering
Alternating minimization

An illustrative example :
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K-means clustering
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In general, a dozen iterations are sufficient for the algorithm to
converge ...
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In general, a dozen iterations are sufficient for the algorithm to
converge to a local minimum.
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K-means clustering
Alternating minimization

Not all initializations are good :
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K-means clustering
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K-means clustering
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K-means clustering
Alternating minimization
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Most implementations (and this is the case for the R function kmeans)
compute the clusterings for several initializations and select the one
having the minimal cost.
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K-means clustering
The iris dataset

The Iris flower data set was introduced by
Ronald Fisher in his 1936 paper. It is some-
times called Anderson’s Iris data set because
Edgar Anderson collected the data to quan-
tify the morphologic variation of Iris flowers
of three related species.

April 5,2016 14
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K-means clustering
R code

Here is a toy example of clustering with R.

1 > Data <- iris[,1:4]
> clus <- kmeans(Data,3)

3 > clus$size
[1] 38 50 62

5 > title <- "Iris data set"
> clusplot(Data, clus$cluster,

7 + color=TRUE, shade=TRUE,
+ labels=4, lines=0,

9 + main=title)
−3 −2 −1 0 1 2 3
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K-means clustering
R code

Here is a toy example of clustering with R.

1 > Data <- iris[,1:4]
> clus <- kmeans(Data,3)

3 > clus$size
[1] 33 96 21

5 > title <- "Iris data set"
> clusplot(Data, clus$cluster,

7 + color=TRUE, shade=TRUE,
+ labels=4, lines=0,

9 + main=title)
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K-means clustering
R code

Pay attention to :
• use several initializations for reducing the randomness of the result
• normalize the columns of the data matrix

1 > Data <- scale(iris[,1:4])
> clus <- kmeans(Data,3,

3 + nstart=100)
> clus$size

5 [1] 53 47 50
> title <- "Iris data set"

7 > clusplot(Data, clus$cluster,
+ color=TRUE, shade=TRUE,

9 + labels=4, lines=0,
+ main=title)
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These two components explain 95.81 % of the point variability.
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K-means clustering
Remarks

• Breaking the ties In the step of assigning data points to clusters it may happen
that two centers are the distance from a data point. Such a tie is usually broken
at random using a coin toss.

• K-medians If the data is likely to contain outliers, it might be better to replace
the squared Euclidean distance by the “manhattan” distance :

‖Xi − Xj‖1 =

p∑
`=1

|xi` − xj`|

and to minimize the cost function
K∑

k=1

∑
i∈Gk

‖Xi − Ck‖1.

This method is referred to as k-medians since Ck is necessarily the median of
the cluster {Xi : i ∈ Gk}.

• PAM More generally, one can consider any measure of dissimilarity between
data points. The resulting algorithm is called partitioning around medoids.

April 5,2016 18
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K-means clustering
Clustering CAC40 companies

Let us consider the problem of clustering the CAC40 companies according to their
stock prices during the past 2 months.

• Each company is described by its daily stock returns (44 real values), the
intraday variation (45 positive values) and the daily volume of exchanges (45
positive values). Data is downloaded from http://www.abcbourse.com/.

• We first determine the number of clusters using the function kmeansruns

> data <- scale(CAC40, center =FALSE)
2 > clus <- kmeansruns(data,3:10)
> k <-clus$bestk

4 > print(k)
[1] 3

6 > clus <- kmeans(data, k, nstart=100)
> clusplot(data, clus$cluster,

8 + color=TRUE, shade=TRUE,
+ labels=4, lines=0,

10 + main=title)
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These two components explain 50.5 % of the point variability.
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Clustering CAC40 companies
The result of k-means

Cluster 1 Cluster 2 Cluster 3
Size :23 Size :7 Size :10

Total
L’oreal
Lvmh
Schneider El
Veolia Env
GDF Suez
Alstom
EDF
Pernod Ric
Danone
...

Credit Agr
Alcatel-Lucent
Societe Generale
Bnp Paribas
Renault
Orange
Arcelor Mittal

Accor
Bouygues
Lafarge
Michelin
Saint Gobain
Vinci
Valeo
Publicis Groupe
Technip
Gemalto

April 5,2016 20
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Gaussian Mixture (GM) Model based clustering
Theoretical background

� The data points X1, . . . ,Xn are assumed to be generated at
random according to the following mechanism :

• n “lablels” Z1, . . . ,Zn are independently generated
according to a distribution π on the set {1, . . . ,K} (if
Zi = k then Xi belongs to the kth cluster).

• for each i = 1, . . . ,n, if Zi = k, then the data point Xi is
drawn from a multivariate Gaussian distribution with a
mean µk and a covariance matrix Σk.

� Only X1, . . . ,Xn are observed. The goal is to find labels
Ẑ1, . . . , Ẑn such that the probability of the event {Ẑi = Zi,∀i} is
as high as possible.

April 5,2016 22
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Gaussian Mixture (GM) Model based clustering

From a mathematical point of view, X1, . . . ,Xn are independent and
have the density :

p(x) =
K∑

k=1

πkϕ(x|µk,Σk)

with ϕ(x|µ,Σ) being the Gaussian density

ϕ(x|µ,Σ) =
1

(2π)p/2|Σ|1/2
exp

{
− 1

2
‖Σ−1/2(x − µ)‖2

}
.

Gaussian density in 2D Density of a GM in 2D (K = 2)
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Gaussian Mixture (GM) Model based clustering
From clustering to estimation

� Since X1, . . . ,Xn are independent and have the density :

p(x) =
K∑

k=1

πkϕ(x|µk,Σk)

if the parameters {π, (µk)k, (Σk)k} of the model were known,
we would determine the cluster number assigned to x by
maximizing w.r.t. k

P
(
Z = k|X = x

)
=
πkϕ(x|µk,Σk)

p(x)
.

� Therefore, it is natural to first estimate {π, (µk)k, (Σk)k} by
{π̂, (µ̂k)k, (Σ̂k)k} and then to set

Ẑ = arg max
k=1,...,K

π̂kϕ(x|µ̂k, Σ̂k).

� Problem : how to estimate these parameters ?

April 5,2016 24
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Gaussian Mixture (GM) Model based clustering
EM algorithm : main idea

Estimation problem

Estimate the quantities {π, (µk)k, (Σk)k} based on the observa-
tion of n independent random variables with density p(x) =∑K

k=1 πkϕ(x|µk,Σk).

� Main difficulty : the maximum likelihood estimator{
π̂, (µ̂k)k, (Σ̂k)k

}ML
= arg max

{π,(µk)k,(Σk)k}

n∑
i=1

logp(Xi)

is, in practice, impossible to compute.

� Work-around : use the identity
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Gaussian Mixture (GM) Model based clustering
EM algorithm : main idea

Estimation problem

Estimate the quantities {π, (µk)k, (Σk)k} based on the observa-
tion of n independent random variables with density p(x) =∑K

k=1 πkϕ(x|µk,Σk).

� Main difficulty : the maximum likelihood estimator{
π̂, (µ̂k)k, (Σ̂k)k

}ML
= arg max

{π,(µk)k,(Σk)k}

n∑
i=1

log
{ K∑

k=1

πkϕ(Xi|µk,Σk)
}

is, in practice, impossible to compute.

� Work-around : use the identity
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Gaussian Mixture (GM) Model based clustering
EM algorithm : main idea

Estimation problem

Estimate the quantities {π, (µk)k, (Σk)k} based on the observa-
tion of n independent random variables with density p(x) =∑K

k=1 πkϕ(x|µk,Σk).

� Main difficulty : the maximum likelihood estimator{
π̂, (µ̂k)k, (Σ̂k)k

}ML
= arg max

{π,(µk)k,(Σk)k}

n∑
i=1

log
{ K∑

k=1

πkϕ(Xi|µk,Σk)
}

is, in practice, impossible to compute.

� Work-around : use the identity

log
{ K∑

k=1

πkak
}

= max
ν

K∑
k=1

(
νk log(πkak)− νk log νk

)
.
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Gaussian Mixture (GM) Model based clustering
EM algorithm : main idea

Estimation problem

Estimate the quantities {π, (µk)k, (Σk)k} based on the observa-
tion of n independent random variables with density p(x) =∑K

k=1 πkϕ(x|µk,Σk).

� Main difficulty : the maximum likelihood estimator{
π̂, (µ̂k)k, (Σ̂k)k

}ML
= arg max

{π,(µk)k,(Σk)k}

n∑
i=1

log
{ K∑

k=1

πkϕ(Xi|µk,Σk)
}

is, in practice, impossible to compute.

� Work-around : use the identity

log
{ K∑

k=1

πkak
}

= max
ν∈RK

+∑
νk=1

K∑
k=1

(
νk log ak − νk log(νk/πk)

)
.
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Gaussian Mixture (GM) Model based clustering
EM algorithm : main idea

Let us denote Ω =
{
π, (µk), (Σk)

}
and Ω̂

ML
=
{
π̂, (µ̂k), (Σ̂k)

}ML
.

Using the previous formulae, we can write Ω̂
ML

as follows

Ω̂
ML

= arg max
Ω

max
ν i

n∑
i=1

K∑
k=1

{
νik log(πkϕ(Xi|µk,Σk))− νik log νik

}
︸ ︷︷ ︸

G(Ω,ν)

.

(1)
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Gaussian Mixture (GM) Model based clustering
EM algorithm : main idea

Let us denote Ω =
{
π, (µk), (Σk)

}
and Ω̂

ML
=
{
π̂, (µ̂k), (Σ̂k)

}ML
.

Using the previous formulae, we can write Ω̂
ML

as follows

Ω̂
ML

= arg max
Ω

max
ν

G(Ω,ν). (1)
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Gaussian Mixture (GM) Model based clustering
EM algorithm : main idea

Let us denote Ω =
{
π, (µk), (Σk)

}
and Ω̂

ML
=
{
π̂, (µ̂k), (Σ̂k)

}ML
.

Using the previous formulae, we can write Ω̂
ML

as follows

Ω̂
ML

= arg max
Ω

max
ν

G(Ω,ν). (1)

� For a fixed Ω, the maximum w.r.t. ν in (1) is explicitly
computable.

� For a fixed ν, the maximum w.r.t. Ω in (1) is explicitly
computable as well.
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Gaussian Mixture (GM) Model based clustering
EM algorithm : main idea

Let us denote Ω =
{
π, (µk), (Σk)

}
and Ω̂

ML
=
{
π̂, (µ̂k), (Σ̂k)

}ML
.

Using the previous formulae, we can write Ω̂
ML

as follows

Ω̂
ML

= arg max
Ω

max
ν

G(Ω,ν). (1)

� For a fixed Ω, the maximum w.r.t. ν in (1) is explicitly
computable.

� For a fixed ν, the maximum w.r.t. Ω in (1) is explicitly
computable as well.

EM-algorithm

Initialize Ω. Then iteratively (until convergence)
- update ν by solving (1) with fixed Ω
- update Ω by solving (1) with fixed ν.
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Gaussian Mixture (GM) Model based clustering
EM algorithm : how it works

EM-algorithm

Initialize Ω. Then iteratively (until convergence)
- update ν by solving (1) with fixed Ω
- update Ω by solving (1) with fixed ν.
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Gaussian Mixture (GM) Model based clustering
EM algorithm : summary and remarks

� The goal of the EM-algorithm is to approximate the maximum
likelihood estimator.

� The EM-algorithm solves a nonconvex optimization problem.
Therefore, there is no guarantee that it finds the global
optimum. Generally, it does not !

� To apply the EM algorithm, the sample size n should be
significantly larger than p× k + p2.

� One can adapt the EM algorithm to other (non Gaussian)
distributions.

� It is possible in the EM algorithm to assume that all the Σk’s are
equal, or that they are all diagonal.

� The auxiliary values νik computed by the EM-algorithm
estimate the probability of Xi to belong to the cluster k.
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Gaussian Mixture (GM) Model based clustering
EM algorithm : R code

The EM-algorithm is implemented in the R-package mclust.

> data <- (iris[,1:4])
2 > irisC <- Mclust(data, G=3)
> clusters <- irisC$classification

4 > table(clusters)
clusters

6 1 2 3
50 45 55

8 > clusplot(data, clusters,
+ color=TRUE, shade=TRUE,

10 + labels=4, lines=0,
+ main="Iris data: EM")
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These two components explain 95.81 % of the point variability.
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Gaussian Mixture (GM) Model based clustering
R code for CAC 40 dataset

1 > data <- scale(CAC40, center =FALSE)
> CAC.cl <- Mclust(data)

3 > clusters <- CAC.cl$classification
> table(clusters)

5 clusters
1 2 3 4 5

7 12 10 8 8 2
> clusplot(data, clusters,

9 + color=TRUE, shade=TRUE,
+ labels=4, lines=0,

11 + main="CAC40: EM")
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These two components explain 51.85 % of the point variability.
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Clustering CAC40 companies
The result of EM

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Size :12 Size :10 Size :8 Size :8 Size :2

Safran
Air Liq
L’oreal
Accor
Bouygues
Pernod Ric
Lvmh
Essilor Intl
Cap Gemini
Alstom
EDF
Legrand SA

Credit Agr
Total
Axa
Vivendi
Alcatel-Luc.
Soc. Gen.
Bnp Paribas
Orange
GDF Suez
Arcelor Mit.

Solvay
Michelin
Kering
Unibail-Rod.
Valeo
Publicis Gr.
Technip
Gemalto

Carrefour
Sanofi
Danone
Schneider El
Veolia Env
Saint Gobain
Vinci
Airbus Group

Lafarge
Renault
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