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General notation

We first introduce the notation that are common to all the models of
contamination considered in this talk.

Number of observations : n.

Dimension of the unknown parameter µ∗: p.

Observations (X1, . . . ,Xn) ∼ P n.

Number of outliers (possibly random): s ∈ {1, . . . , n}.

Set of outliers: S ⊂ {1, . . . , n}.

Proportion of outliers: ε = E[s/n] = E[|S|/n].

Setting (informal)

Among the n observations X1, . . . ,Xn, there is a small number s of
outliers. If we remove the outliers, all the other Xi’s are iid drawn from
a reference distribution Pµ∗ .
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Gaussian model with unknown mean

Assumption (model for inliers)

Throughout this presentation, we assume that the reference distribution
Pµ∗ is p-variate Gaussian Np(µ∗, Ip). The goal is to estimate the
parameter µ∗ ∈ Rp.
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Huber’s contamination

Assumption (HC model for outliers)

There are unobserved iid random variables Z1, . . . , Zn ∼ B(ε) and a
distribution Q, such that

L (Xi|Zi = 0) = Np(µ∗, Ip), L (Xi|Zi = 1) = Q,

the observations Xi corresponding to different i’s are independent.
This is equivalent to

P n =
{

(1− ε)Np(µ∗, Ip) + εQ
}⊗n

.

In this model,

S = {i : Zi = 1}︸ ︷︷ ︸
set of outliers

and s ∼ B(n, ε)︸ ︷︷ ︸
nb of outliers

are both random.
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We write

Pn ∈MHC
n (p, ε,µ∗).

for the model of Huber’s
contamination.
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Huber’s deterministic contamination

Assumption (HDC model for outliers)

There is a set S ⊂ {1, . . . , n} of cardinality s = [nε] and a distribution
Q, such that

{Xi : i ∈ Sc} iid∼ Np(µ∗, Ip) ⊥⊥ {Xi : i ∈ S} iid∼ Q.

Similar to HC: the outliers are iid.

Different from HC: the set of outliers is determenistic.

Remark The number of outliers s should be smaller than n/2,
otherwise Q would be the reference distribution and Np(µ∗, Ip) the
contamination.

We write Pn ∈MHDC
n (p, ε,µ∗).
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Parameter contamination

Assumption (PC model for outliers)

There is a set S ⊂ {1, . . . , n} of cardinality s = [nε] and a collection of
vectors {µi : i ∈ S}, such that

{Xi : i ∈ Sc} iid∼ Np(µ∗, Ip) ⊥⊥ {Xi : i ∈ S} ∼
⊗
i∈S
Np(µi, Ip).

Similar to HC & HDC: the outliers are independent.

Different from HC & HDC: the outliers might have different
distributions.

We write Pn ∈MPC
n (p, ε,µ∗).
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Adversarial contamination

Assumption (AC model for outliers)

For a sequence Y i
iid∼ Np(µ∗, Ip), i = 1, . . . , n, and a random set

S ⊂ {1, . . . , n} of cardinality s = [nε] we have

Xi = Y i, ∀i ∈ Sc.

The set S is not independent of {Y i : i = 1, . . . , n}.

The observations {Xi : i ∈ S} may have arbitrary dependence
structure.

We write Pn ∈MAC
n (p, ε,µ∗).
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Relation between the models

MHC
n (p, ε,µ∗)

MHDC
n (p, 2ε,µ∗)

MPC
n (p, 2ε,µ∗)

MAC
n (p, 2ε,µ∗)
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Historical approach
Breakdown point

Assume the unknown parameter µ∗ is in Rp.

Let µ̂ be an estimator of µ∗. Thus,

µ̂ :

∞⋃
n=1

Xn → Rp.

The breakdown point ε∗n of µ̂ is defined by

ε∗n =
1

n
min

{
s ∈ {1, . . . , n} : sup

y1,...,ys

‖µ̂(x1:(n−s),y1:s)‖ = +∞
}
.

Drawbacks:

does not take into account the impact of “mild” outliers,
meaningless if the parameter space is bounded,
does not depend on the norm under consideration,
...
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Minimax approach
In expectation

A more informative way of quantifying the robustness is the
evaluation of the worst-case risk and its comparison to the
minimax risk.

Worst-case risk of an estimator µ̂n:

R?
n,p,ε(µ̂n) = sup

µ∗
sup

Pn∈M?
n(p,ε,µ∗)

EX∼Pn [‖µ̂n(X)− µ∗‖22].

Here,M?
n(p, ε,µ∗) is one of the 4 models of contamination

considered in previous slides.
For instance, RHC

n,p,ε(µ̂n) is the minimax risk for Huber’s
contamination model.

Minimax risk:
R?

n,p,ε = inf
µ̂n

R?
n,p,ε(µ̂n).
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Minimax approach
In deviation

Most results in the literature provide bounds on the deviation, not
for the expectation.

Fix a confidence level δ ∈ (0, 1).

Worst-case deviation of an estimator µ̂n: r?n,p,ε(µ̂n) is solution to

minimize r

subject to PX∼Pn

(
‖µ̂n(X)− µ∗‖22 > r

)
≤ δ

∀µ∗ ∈ Rp, ∀P n ∈M?
n(p, ε,µ∗).

Clearly, r?n,p,ε(µ̂n) depends on δ, but we will not be interested in
this dependence.

Minimax risk:
r?n,p,ε = inf

µ̂n

r?n,p,ε(µ̂n).

Tchebychev’s inequality yields δr?n,p,ε(µ̂n) ≤ R?
n,p,ε(µ̂n).
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Common robust estimators of the mean

The most common robust estimators of the mean are perhaps the
coordinatewise median, the geometric median and the Huber’s
estimator.

All these estimators can be defined as an M -estimator:

µ̂n ∈ arg min
µ∈Rp

n∑
i=1

Ψ(Xi − µ)

with

Ψ(x) =


‖x‖1, coordinatewise median,
‖x‖2, geometric median,
‖x‖22

2 ∧ λ(‖x‖2 − 0.5λ), Huber’s estimator.

In all the three cases, the function Ψ is convex and the estimator
is computable in polynomial time.
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Overview of the results
Minimax rates in deviation
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Overview of the results
Tractable estimators

We will present three tractable estimators that improve on the
coordinatewise median.

1 The ellipsoid method (Diakonikolas et al., 2016).

2 The spectral method (Lai et al., 2016).

3 The iterative soft thresholding (Collier and Dalalyan, 2017).
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Minimax lower bound

Theorem 1 (Chen et al., 2015)

There is a constant c > 0 such that for every ε ∈ [0, 1] and every
δ ∈ (0, 1/2), it holds that

rHC
n,p,ε ≥ c

(
p

n
+ ε2

)
.

Some remarks

By Tchebychev’s inequality, p
n + ε2 is also a lower bound for the

minimax risk in expectation.

By inclusion, p
n + ε2 is also a lower bound for the minimax risk in

models HDC and AC.

The same lower bound p
n + ε2 holds true for the model PC.
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Proof of the lower bound 1

1 From the classic parametric minimax theory: rHC
n,p,ε &

p
n .

2 Thus, we need only to show that rHC
n,p,ε & ε

2.

3 Main steps of the proof:

Reduction to dimension 1: rHC
n,p,ε ≥ rHC

n,1,ε.
Construct a probability density function fε such that

f⊗nε ∈MHC
n (1, ε, 0)

f⊗nε ∈MHC
n (1, ε,∆ε)

with ∆ε � ε.

Parameter values µ∗ = 0 and µ∗ = ∆ε are indistinguishable
from the observations X1, . . . ,Xn ∼ f⊗nε .

Therefore rHC
n,p,ε & ‖∆ε − 0‖22 � ε2.
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Proof of the lower bound 2

For a ∆ > 0, define f◦∆ = ϕ0 ∨ ϕ∆.
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Proof of the lower bound 2

For a ∆ > 0, define f◦∆ = ϕ0 ∨ ϕ∆.

We have S∆ =
∫
f◦∆(x) dx = 1 + a∆ +O(∆2).
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Proof of the lower bound 2

For a ∆ > 0, define f◦∆ = ϕ0 ∨ ϕ∆.

We have S∆ =
∫
f◦∆(x) dx = 1 + a∆ +O(∆2).

Then, f∆ = f◦∆/S∆ is a pdf.

We choose ∆ε so that 1/S∆ε
= 1− ε

and set fε = f∆ε .
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Proof of the lower bound 3

fε = (1− ε)(ϕ0 ∨ ϕ∆ε
)

ll ll

(1− ε)ϕ0

+ +

εq

fε =
(1− ε)ϕ0 + εq

(1− ε)ϕ∆ε
+ εq′

.
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Minimax upper bound

Theorem 2 (Chen et al., 2015)
There are two constants C1, C2 > 0 such that

for every ε ≤ 1/5
for every p ≤ C1n
for every δ ≥ e−C1n,

it holds that

rHC
n,p,ε ≤ C2

(
p

n
+ ε2 +

log 1/δ

n

)
.

Some remarks:

The upper bound is attained by Tukey’s median.

The condition ε ≤ 1/5 can be replaced by ε ≤ 1/3− c′, with an
arbitrarily small c′ > 0.

The estimator does not rely on the knowledge of ε.
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Tukey’s median

The upper bound is attained by
Tukey’s median.

Tukey’s median is any maximaizer of
Tukey’s depth:

µ̂TM
n ∈ arg max

µ∈Rp

D(µ, {X1:n}).

Tukey’s (halfspace) depth is

D(µ,X1:n) = min
u∈S1

n∑
i=1

1(u>Xi ≤ u>µ).

µ̂TM
n is computationally intractable for

large p.
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Summary

We introduced four models of contamination by outliers:

Huber’s contaminationMHC
n (p, ε,µ∗).

Huber’s deterministic contaminationMHDC
n (p, ε,µ∗).

Parameter contaminationMPC
n (p, ε,µ∗).

Adversarial contaminationMAC
n (p, ε,µ∗).

We have defined the worst case risks in expectation and in
deviation, R?

n,p,ε(µ̂) and r?n,p,ε(µ̂).

We have defined the minimax risks R?
n,p,ε = infµ̂R

?
n,p,ε(µ̂) .

For every ε < 1/3−�, we have r?n,p,ε �
p
n + ε2.

This minimax rate is obtained by Tukey’s median, which is hard to
compute for large p.

Question
What is the smallest rate of the worst-case risk that can be obtained by
an estimator computable in poly(n, p, 1/ε) time?
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n (p, ε,µ∗).

Parameter contaminationMPC
n (p, ε,µ∗).

Adversarial contaminationMAC
n (p, ε,µ∗).

We have defined the worst case risks in expectation and in
deviation, R?

n,p,ε(µ̂) and r?n,p,ε(µ̂).

We have defined the minimax risks r?n,p,ε = infµ̂ r
?
n,p,ε(µ̂) .

For every ε < 1/3−�, we have r?n,p,ε �
p
n + ε2.

This minimax rate is obtained by Tukey’s median, which is hard to
compute for large p.

Question
What is the smallest rate of the worst-case risk that can be obtained by
an estimator computable in poly(n, p, 1/ε) time?
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