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Quick Recap



General notation

We first introduce the notation that are common to all the models of
contamination considered in this talk.

@ Number of observations : n.

@ Dimension of the unknown parameter p*: p.

@ Observations (X4,...,X,) ~ P,.

@ Number of outliers (possibly random): s € {1,...,n}.

@ Setof outliers: S C {1,...,n}.

@ Proportion of outliers: ¢ = E[s/n] = E][|S|/n].
Setting (informal)

Among the n observations X, ..., X, there is a small number s of
outliers. If we remove the outliers, all the other X ;’s are iid drawn from
a reference distribution NV, (p*, I,,).
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Summary of the first lecture

@ We have introduced four models of contamination: MY (p, e, u*).

MHDC
@ Huber’s Cont.: .D.:.HC. MHC
@ Huber’s deterministic: 0 = HDC. n
e Parameter Cont.: 00 = PC. MPC
@ Adversarial Cont.: O = AC. MAC Q
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Summary of the first lecture

@ We have introduced four models of contamination: MY (p, e, u*).

MHDC
e Huber’s Cont.: .D.:.HC. MHC
e Huber’s deterministic: 0 = HDC. ®
° Parametgr Cont.: O =PC. MEC
e Adversarial Cont.: O = AC. MAC
@ We have defined the worst case risk 7, , (1) and the
minimax risk r; = infg 7}, , (1)
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@ We have introduced four models of contamination: MY (p, e, u*).

MHDC
e Huber’s Cont.: .D.:.HC. MHC
e Huber’s deterministic: 0 = HDC. ®
° Parametgr Cont.: O = PC. MPC
e Adversarial Cont.: O = AC. MAC 2
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minimax risk r; = infg 7}, , (1)
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@ This minimax rate is obtained by Tukey’s median.
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Summary of the first lecture

@ We have introduced four models of contamination: MY (p, e, u*).

MHDC
e Huber’s Cont.: .D.:.HC. MHC
e Huber’s deterministic: 0 = HDC. ®
° Parametgr Cont.: O =PC. MEC
e Adversarial Cont.: O = AC. MAC
@ We have defined the worst case risk 7, , (1) and the
minimax risk r; = infg 7}, , (1)

@ We have seenthatVe < 1/3 — 0, we have r; . =<| 2 +¢&2 |

n,p,e n
@ This minimax rate is obtained by Tukey’s median.
Question

What is the smallest rate of the worst-case risk that can be obtained by
an estimator computable in poly(n,p, 1/¢) time?
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4. Robust estimation by the ellipsoid method



Worst-case risk bound
Ellipsoid method for robust estimation

Theorem 3 (Diakonikolas et al., 2016)

Let 6 € (0,1/2). There are constants ¢, C > 0 such that, for every
e < ¢, on a set of probability > 1 — 4, the ellipsoid method for robust

estimation terminates in poly(n,p,1/¢) steps and outputs a weight
vector w € [0, 1]™ such that the mean

AEll
sz

satisfies g2 — | < 0 2 + elog(1/) + 2E0/)).

@ Valid for M4 (p, e, u*).
@ Complexity of 1 step: O(np?).
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Worst-case risk bound
Ellipsoid method for robust estimation

Theorem 3 (Diakonikolas et al., 2016)

Let 6 € (0,1/2). There are constants ¢, C > 0 such that, for every
e < ¢, on a set of probability > 1 — 4, the ellipsoid method for robust

estimation terminates in poly(n,p,1/¢) steps and outputs a weight
vector w € [0, 1]™ such that the mean

AEll
sz

satisfies |5 _ , ||2<C< + e log(1/e) + 10%(;/5))

@ Valid for M4 (p, e, u*).
@ Complexity of 1 step: O(np?).
@ Extra factor log(1/e).
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Ellipsoid Algorithm
The classic one

@ Nemirovski-Yudin (1976), Chor (1976-77), Khachiyan (1979).
@ The goal is to find a point w belonging to the polytope P.
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Ellipsoid Algorithm
The classic one

@ Nemirovski-Yudin (1976), Chor (1976-77), Khachiyan (1979).
@ The goal is to find a point w belonging to the polytope P.

@ One needs

e an ellipsoid containing P,
e a membership oracle,
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Ellipsoid Algorithm
The classic one

@ Nemirovski-Yudin (1976), Chor (1976-77), Khachiyan (1979).
@ The goal is to find a point w belonging to the polytope P.

@ One needs

e an ellipsoid containing P,
e a membership oracle,
@ a separation oracle,
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Ellipsoid Algorithm
The classic one

@ Nemirovski-Yudin (1976), Chor (1976-77), Khachiyan (1979).
@ The goal is to find a point w belonging to the polytope P.

@ One needs

an ellipsoid containing P,

a membership oracle,

a separation oracle,

a lower bound on the volume of P,

Dalalyan, A.S. Dec 18,2018



Ellipsoid Algorithm
The classic one

@ Nemirovski-Yudin (1976), Chor (1976-77), Khachiyan (1979).
@ The goal is to find a point w belonging to the polytope P.
@ Repeat K times:

if the center wy, € P, stop and output wy,
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Ellipsoid Algorithm
The classic one
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Ellipsoid Algorithm
The classic one

Ek

owk¢7)

@ Nemirovski-Yudin (1976), Chor (1976-77), Khachiyan (1979).
@ The goal is to find a point w belonging to the polytope P.
@ Repeat K times:

if the center wy, € P, stop and output wy,
else compute the minimal volume ellipsoid &1 containing W.
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Ellipsoid Algorithm
The classic one

Ek

owk¢7)

@ Nemirovski-Yudin (1976), Chor (1976-77), Khachiyan (1979).
@ The goal is to find a point w belonging to the polytope P.
@ Repeat K times:

if the center wy, € P, stop and output wy,
else compute the minimal volume ellipsoid &1 containing W.

@ Since vol(Ex11) < e~ /2t Dyol(&,), the algo will stop after O(n?)
steps,
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Ellipsoid Algorithm
The classic one

V0|<gk+1) < 671/2(71 + D)
Vol(&) =

@ Nemirovski-Yudin (1976), Chor (1976-77), Khachiyan (1979).
@ The goal is to find a point w belonging to the polytope P.
@ Repeat K times:

if the center wy, € P, stop and output wy,
else compute the minimal volume ellipsoid &1 containing W.

@ Since vol(Ex11) < e~ /2t Dyol(&,), the algo will stop after O(n?)
steps, if logvol(P) > —cn.
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Ellipsoid Algorithm
The classic one

@ Nemirovski-Yudin (1976), Chor (1976-77), Khachiyan (1979).
@ The goal is to find a point w belonging to the polytope P.
@ Repeat K times:

if the center wy, € P, stop and output wy,
else compute the minimal volume ellipsoid &1 containing W.

@ Since vol(Ex11) < e~ /2t Dyol(&,), the algo will stop after O(n?)
steps, if logvol(P) > —cn.
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Ellipsoid method for robust estimation

Goal: use the ellipsoid algorithm for approximating the ideal weight
vector w* defined by w; =1(i € S¢)/(n—s),i=1,...,n.

@ Candidate weights @ = {w € [0, 2-]" : w1, = 1}.

I n—2s

@ Good weights [note that w* € Q* C Q]

n
0 — {w €0 H Y wi(Xi - X)X~ X)L,
=1

with 7 = C(% + szlog(l/g) + M).

n

2
<7,
sp

Dalalyan, A.S. Dec 18,2018

8



Ellipsoid method for robust estimation

Goal: use the ellipsoid algorithm for approximating the ideal weight
vector w* defined by w; =1(i € S¢)/(n—s),i=1,...,n.

@ Candidate weights @ = {w € [0, 2-]" : w1, = 1}.

I n—2s

@ Good weights [note that w* € Q* C Q]

n
0 — {w €0 H Y wi(Xi - X)X~ X)L,
=1

with 7 = C(2 + £2log(1/e) + 281/,
@ With probability > 1 — 4,

o w* € OF,
e Yw ¢ Q*, one can linearly
separate w from w*.

2
<7,
sp
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Ellipsoid method for robust estimation

Goal: use the ellipsoid algorithm for approximating the ideal weight
vector w* defined by wf =1(i € S¢)/(n—3s),i=1,...,n

@ Candidate weights @ = {w € [0, -] 1w "1, = 1}.
@ Good weights [note that w* € Q* C Q]
2
O weN: wi (X WX — X —1I <rTg5.
~{wen:|3 X=X -1 <7}

with 7 = C(2 + £2log(1/e) + 281/,
@ With probability > 1 — 4,

@ no lower bound on vol(Q*),
@ no separation between w and Q*.
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Ellipsoid method for robust estimation

Goal: use the ellipsoid algorithm for approximating the ideal weight
vector w* defined by w; =1(i € S¢)/(n—s),i=1,...,n.

@ Candidate weights @ = {w € [0, 2-]" : w1, = 1}.

I n—2s

@ Good weights [note that w* € Q* C Q]

n
0 — {w €0 H Y wi(Xi - X)X~ X)L,
=1

2
<7,
sp

with 7 = C(2 + £2log(1/e) + 281/,
@ With probability > 1 — 4,

lDioes i: reall3il tle:iminilte I @ no lower bound on vol(Q*),
Il polynomialtime : @ no separation between w and Q*.
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5. Robust estimation by the spectral method



Spectral method for robust estimation
Finite sample guarantees

Theorem 4 (Lai et al., 2016)
There are constants «, ¢, C > 0 such that, for every e < ¢, in an event of
probability > 1 — 1/p%, the spectral method for robust estimation runs
in poly(n, p, 1/¢)-time and outputs a vector P such that
p(logp)*logn
(P

~S *
1B - wriz < L 1ogp).

@ Valid for MAC(p, &, pu*).
@ Overall complexity: O(np?).
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Spectral method for robust estimation
Finite sample guarantees

Theorem 4 (Lai et al., 2016)
There are constants «, ¢, C > 0 such that, for every e < ¢, in an event of
probability > 1 — 1/p%, the spectral method for robust estimation runs
in poly(n, p, 1/¢)-time and outputs a vector P such that
p(logp)*logn
(e

~S *
1B - wriz < L 1ogp).

@ Valid for MAC(p, e, u*).
@ Overall complexity: O(np?).
@ Extra factors (log p)? log n and log p.
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Spectral method for robust estimation
Finite sample guarantees

Theorem 4 (Lai et al., 2016)

There are constants «, ¢, C > 0 such that, for every e < ¢, in an event of

probability > 1 — 1/p%, the spectral method for robust estimation runs

in poly(n, p, 1/¢)-time and outputs a vector P such that

(p(log p)*logn
n

~S *
1B - wriz < L 1ogp).

Valid for MAC(p, e, p*).
Overall complexity: O(np?).
Extra factors (logp)? logn and log p.

The decay of the probability is polynomial in p (versus exponential
for other methods).
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Spectral method for robust estimation
The algorithm
Start by data-splitting X 1.,, = D1, ..., Dy with k = [log, p)].
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n
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n

@ Define 1i°F on a subspace V, C V- of dimension p/4 using D,.
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Start by data-splitting X 1.,, = D1, ..., Dy with k = [log, p)].

© Define 1i°° on a subspace V; of dimension p/2 using D.

n

@ Define 1i°F on a subspace V, C V- of dimension p/4 using D,.

® ..soon...

Dalalyan, A.S. Dec 18,2018



Spectral method for robust estimation
The algorithm
Start by data-splitting X 1.,, = D1, ..., Dy with k = [log, p)].
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Spectral method for robust estimation
The algorithm
Start by data-splitting X 1.,, = D1, ..., Dy with k = [log, p)].

© Define 1i°° on a subspace V; of dimension p/2 using D.

n

@ Define 1i°F on a subspace V, C V- of dimension p/4 using D,.

® ..soon...
O Define P on Vi, = (Vi & ... & Vi_y)* using Dy.
e Compute the median of {IIy, X : X € Dy}
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Spectral method for robust estimation
The algorithm
Start by data-splitting X 1.,, = D1, ..., Dy with k = [log, p)].
© Define 1i°° on a subspace V; of dimension p/2 using D.

o DI =D\ {X :|| X —Med(D,)l|]2 > Cy/plogn}.

@ Define 1i°F on a subspace V5 C V- of dimension p/4 using D,.

® ..soon...
O Define P on Vi, = (Vi & ... & Vi_1)* using Dy.
e Compute the median of {IIy, X : X € Dy}
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Spectral method for robust estimation
The algorithm
Start by data-splitting X 1.,, = D1, ..., Dy with k = [log, p)].
© Define 1i°° on a subspace V; of dimension p/2 using D.

o DI =D\ {X :|| X —Med(D,)l|]2 > Cy/plogn}.
e Compute the SVD of the Cov(D7).
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Spectral method for robust estimation
The algorithm
Start by data-splitting X 1.,, = D1, ..., Dy with k = [log, p)].
© Define 1i°° on a subspace V; of dimension p/2 using D.

o DI =D\ {X :|| X —Med(D,)l|]2 > Cy/plogn}.
e Compute the SVD of the Cov(D7).
e Let V; be the subspace of p/2 smallest eigenvectors.

@ Define 1i°F on a subspace V5 C V- of dimension p/4 using D,.

® ..soon...
O Define P on Vi, = (Vi & ... & Vi_1)* using Dy.
e Compute the median of {IIy, X : X € Dy}
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Spectral method for robust estimation
The algorithm
Start by data-splitting X 1.,, = D1, ..., Dy with k = [log, p)].
© Define 1i°° on a subspace V; of dimension p/2 using D.

D) =D\ {X : || X —Med(Dy)|]2 > Cv/plogn}.
Compute the SVD of the Cov(D}).
Let V1 be the subspace of p/2 smallest eigenvectors.

Set Ily, (i°7) := Mean(Ily, D}) and D} := II,. D,.

@ Define 1i°F on a subspace V5 C V- of dimension p/4 using D,.

® ..soon...
O Define P on Vi, = (Vi & ... & Vie_y)* using Dy.
e Compute the median of {IIy, X : X € Dy}
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Spectral method for robust estimation
The algorithm
Start by data-splitting X 1.,, = D1, ..., Dy with k = [log, p)].
© Define 1i°° on a subspace V; of dimension p/2 using D.

D) =D\ {X : || X —Med(Dy)|]2 > Cv/plogn}.
Compute the SVD of the Cov(D}).
Let V1 be the subspace of p/2 smallest eigenvectors.

Set Ily, (i°7) := Mean(Ily, D}) and D} := II,. D,.

@ Define 1i°F on a subspace V5 C V- of dimension p/4 using D,.
DY :=Dy\{X € Vit : | X — Med(D})|l2 > Cv/plogn}.
Compute the SVD of the Cov(DY).

Let V, be the subspace of p/4 smallest eigenvectors.

Set Iy, (") := Mean(Ily, D4) and D} := Iy, vy Do

® ..soon...
O Define P on Vi, = (Vi & ... & Vie_y)* using Dy.
e Compute the median of {IIy, X : X € Dy}
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5. lterative group soft thresholding



Parameter contamination
Some notation

@ We observe X1,..., X, in R? such that
iid

Goal: estimate the vector p*.
Sparsity assumption: most vectors 8 are equal to zero.

S ={i:|07|]2 > 0} is considered as the set of outliers.

Vectors 6; are unknown nuisance parameters.

Matrix notation: [ X=p*1l +O" +&. }

@ Auxiliary problem: estimate L,,(®*) =1 Y"" 6

n

*
i
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Naive idea: Group-lasso estimator

@ Group lasso (Chesneau and Hebiri, 2008; Lin and Zhang, 2006;
Lounici, Pontil, van de Geer, and Tsybakov, 2011; Meier, van de
Geer, and Bihlmann, 2009; Yuan and Lin, 2006):

(1,0) ¢ arg min { SIXi—n—0i3+> Ai||9i||2}.
’ i=1 i=1

@ The above optimization problem is convex and can be solved
efficiently even when p and n are large. 1 is exactly the Huber
M-estimator (Donoho and Montanari, 2016).

Theorem
If s <n/32and \; = 6,/p, then, with prob. > 1 — 4,

© ~ 0g(2/6
ILn(©) — Ln(©%)|3 < €2p, \|H*M||2<p+5p+ (n/).
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Idea behind iterative group soft thresholding

@ Group lasso:
(.0) € argmin { 31X, — = 0:[3+ D Nilou]}.
’ i=1 i=1
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Idea behind iterative group soft thresholding
@ Group lasso: . .
(1,©) € arg%{; 1X: — o — 043+ ;Aineinz}.
@ We have .
fi— argmgn{; 1X: = 1= 83} = Lu(X) — L(©).
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Idea behind iterative group soft thresholding

@ Group lasso:
(.©) € argmin { 371X, — = 0,3+ D A6l .
’ i=1 i=1
@ We have .
fi=argmin { 31X, — = O3} = Lu(X) — Lu(©).
i=1

@ lfweset Z, = X, — {L,(X) — Ln((:))}, we get

® e argngn{;nzi — 0,2 +;Aineiu2}
1= 1=

which is the group-soft-thresholding (GST) estimator applied to Z.
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Idea behind iterative group soft thresholding

@ Group lasso:
(1.0) € arggg{zl 1X: — - 03 +2Ai||01:||2}.
@ We have .
fi=argmin { 31X, — = O3} = Lu(X) — Lu(©).
=1

@ lfweset Z, = X, — {L,(X) — Ln((:))}, we get

® e argngn{;nzi — 0,2 +;Aineiu2}
1= 1=

which is the group-soft-thresholding (GST) estimator applied to Z.

@ Some prior work on linear functional estimation suggests to
choose o 214 Z,|

(123 -nY*
Unfortunately, we can not do that since Z depends on ©.
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lterative group soft thresholding
Algorithm

Algorithm of IGST

@ Start with an estimator ©°, for instance, group lasso.
@ fork=1,...,K,do
1) Zi = Xi —{L.(X) — L,(©" 1)}

2pY4 Z; |2
(12:12 - p)}/?

3) ©F = GST(Z, ).

2) A =

@ Final estimator:
BT = L,(X) - L,(6F).
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lterative group soft thresholding
Risk bound

Theorem 5 (Collier and Dalalyan, 2017)

Let v > 0 and assume the IGST estimator is run for

K =log,(1/v) + loglog p iterations.

There are constants ¢, C' > 0 such that for every € < ¢, in an event of
probability > 1 — e~?/8, the IGST estimator satisfies

1-v
st - i < oL er () ).
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lterative group soft thresholding
Risk bound

Theorem 5 (Collier and Dalalyan, 2017)

Let v > 0 and assume the IGST estimator is run for

K =log,(1/v) + loglog p iterations.

There are constants ¢, C' > 0 such that for every € < ¢, in an event of
probability > 1 — e~?/8, the IGST estimator satisfies

1-v
st - i < oL er () ).

@ Valid for MEC(p, e, u*).
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lterative group soft thresholding
Risk bound

Theorem 5 (Collier and Dalalyan, 2017)

Let v > 0 and assume the IGST estimator is run for

K =log,(1/v) + loglog p iterations.

There are constants ¢, C' > 0 such that for every € < ¢, in an event of
probability > 1 — e~?/8, the IGST estimator satisfies

1-v
st - i < oL er () ).

@ Valid for MEC(p, e, u*).

@ Overall complexity O(nploglog p)
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lterative group soft thresholding
Risk bound

Theorem 5 (Collier and Dalalyan, 2017)

Let v > 0 and assume the IGST estimator is run for

K =log,(1/v) + loglog p iterations.

There are constants ¢, C' > 0 such that for every € < ¢, in an event of
probability > 1 — e~?/8, the IGST estimator satisfies

1—v
st - i < oL er () ).
n

@ Valid for MEC(p, e, u*).
@ Overall complexity O(nploglog p)

@ Exponential in p decay of probability.
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lterative group soft thresholding
Risk bound

Theorem 5 (Collier and Dalalyan, 2017)

Let v > 0 and assume the IGST estimator is run for

K =log,(1/v) + loglog p iterations.

There are constants ¢, C' > 0 such that for every € < ¢, in an event of
probability > 1 — e~?/8, the IGST estimator satisfies

1—v
st - i < oL er () ).
n

@ Valid for MEC(p, e, u*).

@ Overall complexity O(nploglog p)

@ Exponential in p decay of probability.
°

The rate is optimal in the regime e = O(p~/2 v n=1/4).
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Summary

@ The ellipsoid method for robust estimation:
e achieves the minimax rate on M2€(p, e, u*) up to an extra
factor log(1/¢).
e Complexity of 1 iteration O(np?).
e Exponential in p decay of probability.
e Poly number of iterations ?
@ The spectral method for robust estimation:
e achieves the minimax rate on M2€(p, e, u*) up to an extra
factor (log p)? log n.
e Overall complexity O(np?).
e Polynomial in p decay of probability.
@ The iterative group-soft-thresholding:
e achieves the minimax rate on MFC(p, e, u*) without any
extra factor when e = O(p~1/2 v n=1/4),
e Overall complexity O(np).
e Exponential in p decay of probability.
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