Robust estimation of a mean in a multivariate Gaussian model: Part 2

Frejus, December 18, 2018

Arnak S. Dalalyan ENSAE ParisTech / CREST

Quick Recap

General notation

We first introduce the notation that are common to all the models of contamination considered in this talk.

- Number of observations : n.
- Dimension of the unknown parameter μ^* : p.
- Observations $(\boldsymbol{X}_1,\ldots,\boldsymbol{X}_n) \sim \boldsymbol{P}_n$.
- Number of outliers (possibly random): $s \in \{1, ..., n\}$.
- Set of outliers: $S \subset \{1, \dots, n\}$.
- Proportion of outliers: $\varepsilon = \mathbf{E}[s/n] = \mathbf{E}[|S|/n]$.

Setting (informal)

Among the n observations X_1, \ldots, X_n , there is a small number s of outliers. If we remove the outliers, all the other X_i 's are iid drawn from a reference distribution $\mathcal{N}_p(\mu^*, \mathbf{I}_p)$.

• We have introduced four models of contamination: $\mathcal{M}_n^{\square}(p, \varepsilon, \mu^*)$.

- Huber's Cont.: $\square = HC$.
- Huber's deterministic: $\square = HDC$.
- Parameter Cont.: $\square = PC$.
- Adversarial Cont.: $\square = AC$.

• We have introduced four models of contamination: $\mathcal{M}_n^{\square}(p, \varepsilon, \mu^*)$.

- Huber's Cont.: $\square = HC$.
- Huber's deterministic: $\square = \mathrm{HDC}$.
- Parameter Cont.: $\square = PC$.
- Adversarial Cont.: $\Box = AC$.

• We have defined the worst case risk $r^\star_{n,p,\varepsilon}(\widehat{\mu})$ and the minimax risk $r^\star_{n,p,\varepsilon}=\inf_{\widehat{\mu}}r^\star_{n,p,\varepsilon}(\widehat{\mu})$.

• We have introduced four models of contamination: $\mathcal{M}_n^{\square}(p, \varepsilon, \mu^*)$.

- Huber's Cont.: $\square = HC$.
- Huber's deterministic: $\square = \mathrm{HDC}$.
- Parameter Cont.: $\square = PC$.
- Adversarial Cont.: $\Box = AC$.

- We have defined the worst case risk $r^\star_{n,p,\varepsilon}(\widehat{\mu})$ and the minimax risk $r^\star_{n,p,\varepsilon}=\inf_{\widehat{\mu}}r^\star_{n,p,\varepsilon}(\widehat{\mu})$.
- We have seen that $\forall\, \varepsilon<1/3-\Box$, we have $r_{n,p,arepsilon}^\starsymp \left(rac{p}{n}+arepsilon^2
 ight)$
- This minimax rate is obtained by Tukey's median.

• We have introduced four models of contamination: $\mathcal{M}_n^{\square}(p, \varepsilon, \mu^*)$.

- Huber's Cont.: $\square = HC$.
- Huber's deterministic: $\square = HDC$.
- Parameter Cont.: $\square = PC$.
- Adversarial Cont.: $\square = AC$.

- We have defined the worst case risk $r^\star_{n,p,\varepsilon}(\widehat{\mu})$ and the minimax risk $r^\star_{n,p,\varepsilon}=\inf_{\widehat{\mu}}r^\star_{n,p,\varepsilon}(\widehat{\mu})$.
- We have seen that $\forall\, \varepsilon<1/3-\Box$, we have $r_{n,p,arepsilon}^\starsymp \left(rac{p}{n}+arepsilon^2
 ight)$
- This minimax rate is obtained by Tukey's median.

Question

What is the smallest rate of the worst-case risk that can be obtained by an estimator computable in $poly(n, p, 1/\varepsilon)$ time?

4. Robust estimation by the ellipsoid method

Worst-case risk bound

Ellipsoid method for robust estimation

Theorem 3 (Diakonikolas et al., 2016)

Let $\delta \in (0,1/2)$. There are constants c,C>0 such that, for every $\varepsilon \leq c$, on a set of probability $\geq 1-\delta$, the *ellipsoid method for robust estimation* terminates in $\operatorname{poly}(n,p,1/\varepsilon)$ steps and outputs a weight vector $\widehat{\boldsymbol{w}} \in [0,1]^n$ such that the mean

$$\widehat{oldsymbol{\mu}}_n^{Ell} = \sum_{i=1}^n \widehat{w}_i oldsymbol{X}_i$$

$$\text{satisfies} \quad \|\widehat{\boldsymbol{\mu}}_n^{Ell} - \boldsymbol{\mu}^*\|_2^2 \leq C \bigg(\frac{p}{n} + \varepsilon^2 \log(1/\varepsilon) + \frac{\log(1/\delta)}{n}\bigg).$$

- Valid for $\mathcal{M}_n^{AC}(p, \varepsilon, \boldsymbol{\mu}^*)$.
- Complexity of 1 step: $O(np^2)$.

Worst-case risk bound

Ellipsoid method for robust estimation

Theorem 3 (Diakonikolas et al., 2016)

Let $\delta \in (0,1/2)$. There are constants c,C>0 such that, for every $\varepsilon \leq c$, on a set of probability $\geq 1-\delta$, the *ellipsoid method for robust estimation* terminates in $\operatorname{poly}(n,p,1/\varepsilon)$ steps and outputs a weight vector $\widehat{\boldsymbol{w}} \in [0,1]^n$ such that the mean

$$\widehat{oldsymbol{\mu}}_n^{Ell} = \sum_{i=1}^n \widehat{w}_i oldsymbol{X}_i$$

$$\text{satisfies} \quad \|\widehat{\boldsymbol{\mu}}_n^{Ell} - \boldsymbol{\mu}^*\|_2^2 \leq C \bigg(\frac{p}{n} + \varepsilon^2 \, \underline{\log(1/\varepsilon)} + \frac{\log(1/\delta)}{n} \bigg).$$

- Valid for $\mathcal{M}_n^{AC}(p, \varepsilon, \boldsymbol{\mu}^*)$.
- Complexity of 1 step: $O(np^2)$.
- Extra factor $\log(1/\varepsilon)$.

Ellipsoid Algorithm The classic one

- Nemirovski-Yudin (1976), Chor (1976-77), Khachiyan (1979).
- The goal is to find a point w belonging to the polytope \mathcal{P} .

The classic one

- Nemirovski-Yudin (1976), Chor (1976-77), Khachiyan (1979).
- The goal is to find a point w belonging to the polytope \mathcal{P} .
- One needs
 - ullet an ellipsoid containing \mathcal{P} ,

The classic one

- Nemirovski-Yudin (1976), Chor (1976-77), Khachiyan (1979).
- The goal is to find a point w belonging to the polytope \mathcal{P} .
- One needs
 - an ellipsoid containing \mathcal{P} ,
 - a membership oracle,

The classic one

- Nemirovski-Yudin (1976), Chor (1976-77), Khachiyan (1979).
- The goal is to find a point w belonging to the polytope \mathcal{P} .
- One needs
 - an ellipsoid containing P,
 - a membership oracle,
 - a separation oracle,

The classic one

- Nemirovski-Yudin (1976), Chor (1976-77), Khachiyan (1979).
- The goal is to find a point w belonging to the polytope \mathcal{P} .
- One needs
 - an ellipsoid containing P,
 - a membership oracle,
 - a separation oracle,
 - a lower bound on the volume of \mathcal{P} ,

The classic one

- Nemirovski-Yudin (1976), Chor (1976-77), Khachiyan (1979).
- The goal is to find a point w belonging to the polytope \mathcal{P} .
- Repeat *K* times:

if the center $w_k \in \mathcal{P}$, stop and output w_k ,

The classic one

- Nemirovski-Yudin (1976), Chor (1976-77), Khachiyan (1979).
- The goal is to find a point w belonging to the polytope \mathcal{P} .
- Repeat *K* times:

if the center $w_k \in \mathcal{P}$, stop and output w_k ,

The classic one

- Nemirovski-Yudin (1976), Chor (1976-77), Khachiyan (1979).
- The goal is to find a point w belonging to the polytope \mathcal{P} .
- Repeat *K* times:

if the center $w_k \in \mathcal{P}$, stop and output w_k , else compute the minimal volume ellipsoid \mathcal{E}_{k+1} containing \mathcal{W}_k .

The classic one

- Nemirovski-Yudin (1976), Chor (1976-77), Khachiyan (1979).
- The goal is to find a point w belonging to the polytope \mathcal{P} .
- Repeat *K* times:

if the center $w_k \in \mathcal{P}$, stop and output w_k , else compute the minimal volume ellipsoid \mathcal{E}_{k+1} containing \mathcal{W}_k .

The classic one

- Nemirovski-Yudin (1976), Chor (1976-77), Khachiyan (1979).
- The goal is to find a point w belonging to the polytope \mathcal{P} .
- Repeat *K* times:

if the center $w_k \in \mathcal{P}$, stop and output w_k , else compute the minimal volume ellipsoid \mathcal{E}_{k+1} containing \mathcal{W}_k .

• Since $\operatorname{vol}(\mathcal{E}_{k+1}) \leq e^{-1/2(n+1)} \operatorname{vol}(\mathcal{E}_k)$, the algo will stop after $O(n^2)$ steps,

The classic one

- Nemirovski-Yudin (1976), Chor (1976-77), Khachiyan (1979).
- The goal is to find a point w belonging to the polytope \mathcal{P} .
- Repeat *K* times:

if the center $w_k \in \mathcal{P}$, stop and output w_k , else compute the minimal volume ellipsoid \mathcal{E}_{k+1} containing \mathcal{W}_k .

• Since $\operatorname{vol}(\mathcal{E}_{k+1}) \leq e^{-1/2(n+1)} \operatorname{vol}(\mathcal{E}_k)$, the algo will stop after $O(n^2)$ steps, if $\log \operatorname{vol}(\mathcal{P}) \geq -cn$.

The classic one

- Nemirovski-Yudin (1976), Chor (1976-77), Khachiyan (1979).
- The goal is to find a point w belonging to the polytope \mathcal{P} .
- Repeat *K* times:

if the center $w_k \in \mathcal{P}$, stop and output w_k , else compute the minimal volume ellipsoid \mathcal{E}_{k+1} containing \mathcal{W}_k .

• Since $\operatorname{vol}(\mathcal{E}_{k+1}) \leq e^{-1/2(n+1)} \operatorname{vol}(\mathcal{E}_k)$, the algo will stop after $O(n^2)$ steps, if $\log \operatorname{vol}(\mathcal{P}) \geq -cn$.

The classic one

- Nemirovski-Yudin (1976), Chor (1976-77), Khachiyan (1979).
- The goal is to find a point w belonging to the polytope \mathcal{P} .
- Repeat *K* times:

if the center $w_k \in \mathcal{P}$, stop and output w_k , else compute the minimal volume ellipsoid \mathcal{E}_{k+1} containing \mathcal{W}_k .

• Since $\operatorname{vol}(\mathcal{E}_{k+1}) \leq e^{-1/2(n+1)} \operatorname{vol}(\mathcal{E}_k)$, the algo will stop after $O(n^2)$ steps, if $\log \operatorname{vol}(\mathcal{P}) \geq -cn$.

The classic one

- Nemirovski-Yudin (1976), Chor (1976-77), Khachiyan (1979).
- The goal is to find a point w belonging to the polytope \mathcal{P} .
- Repeat *K* times:

if the center $w_k \in \mathcal{P}$, stop and output w_k , else compute the minimal volume ellipsoid \mathcal{E}_{k+1} containing \mathcal{W}_k .

• Since $\operatorname{vol}(\mathcal{E}_{k+1}) \leq e^{-1/2(n+1)} \operatorname{vol}(\mathcal{E}_k)$, the algo will stop after $O(n^2)$ steps, if $\log \operatorname{vol}(\mathcal{P}) \geq -cn$.

Goal: use the ellipsoid algorithm for approximating the ideal weight vector \mathbf{w}^* defined by $w_i^* = \mathbb{1}(i \in S^c)/(n-s), i = 1, \dots, n$.

- Candidate weights $\Omega = \{ \boldsymbol{w} \in [0, \frac{1}{n-2a}]^n : \boldsymbol{w}^\top \mathbf{1}_n = 1 \}.$
- Good weights [note that $w^* \in \Omega^* \subset \Omega$]

$$\Omega^* = \left\{ \boldsymbol{w} \in \Omega : \left\| \sum_{i=1}^n w_i (\boldsymbol{X}_i - \bar{\boldsymbol{X}}_{\boldsymbol{w}}) (\boldsymbol{X}_i - \bar{\boldsymbol{X}}_{\boldsymbol{w}})^\top - \mathbf{I}_p \right\|_{sp}^2 \le \tau \right\}.$$

with
$$\tau = C(\frac{p}{n} + \varepsilon^2 \log(1/\varepsilon) + \frac{\log(1/\delta)}{n})$$
.

Goal: use the ellipsoid algorithm for approximating the ideal weight vector \mathbf{w}^* defined by $w_i^* = \mathbb{1}(i \in S^c)/(n-s), i = 1, \dots, n$.

- Candidate weights $\Omega = \{ \boldsymbol{w} \in [0, \frac{1}{n-2a}]^n : \boldsymbol{w}^{\top} \mathbf{1}_n = 1 \}.$
- Good weights [note that $w^* \in \Omega^* \subset \Omega$]

$$\Omega^* = \left\{ \boldsymbol{w} \in \Omega : \left\| \sum_{i=1}^n w_i (\boldsymbol{X}_i - \bar{\boldsymbol{X}}_{\boldsymbol{w}}) (\boldsymbol{X}_i - \bar{\boldsymbol{X}}_{\boldsymbol{w}})^\top - \mathbf{I}_p \right\|_{sp}^2 \le \tau \right\}.$$

with
$$\tau = C(\frac{p}{n} + \varepsilon^2 \log(1/\varepsilon) + \frac{\log(1/\delta)}{n})$$
.

- With probability $> 1 \delta$,
 - $\boldsymbol{w}^* \in \Omega^*$.
 - $\forall w \notin \Omega^*$, one can linearly separate w from w^* .

Dec 18, 2018

Goal: use the ellipsoid algorithm for approximating the ideal weight vector w^* defined by $w_i^* = \mathbb{1}(i \in S^c)/(n-s), i=1,\ldots,n$.

- Candidate weights $\Omega = \{ \boldsymbol{w} \in [0, \frac{1}{n-2s}]^n : \boldsymbol{w}^\top \mathbf{1}_n = 1 \}.$
- Good weights [note that ${m w}^* \in \Omega^* \subset \Omega$]

$$\Omega^* = \left\{ \boldsymbol{w} \in \Omega : \left\| \sum_{i=1}^n w_i (\boldsymbol{X}_i - \bar{\boldsymbol{X}}_{\boldsymbol{w}}) (\boldsymbol{X}_i - \bar{\boldsymbol{X}}_{\boldsymbol{w}})^\top - \mathbf{I}_p \right\|_{sp}^2 \le \tau \right\}.$$

with
$$\tau = C(\frac{p}{n} + \varepsilon^2 \log(1/\varepsilon) + \frac{\log(1/\delta)}{n})$$
.

- With probability $\geq 1 \delta$,
 - $w^* \in \Omega^*$.
 - $\forall w \notin \Omega^*$, one can linearly separate w from w^* .
- no lower bound on $vol(\Omega^*)$,
- no separation between ${\boldsymbol w}$ and Ω^* .

Goal: use the ellipsoid algorithm for approximating the ideal weight vector \mathbf{w}^* defined by $w_i^* = \mathbb{1}(i \in S^c)/(n-s), i=1,\ldots,n$.

- Candidate weights $\Omega = \{ \boldsymbol{w} \in [0, \frac{1}{n-2s}]^n : \boldsymbol{w}^\top \mathbf{1}_n = 1 \}.$
- Good weights [note that ${m w}^* \in \Omega^* \subset \Omega$]

$$\Omega^* = \left\{ \boldsymbol{w} \in \Omega : \left\| \sum_{i=1}^n w_i (\boldsymbol{X}_i - \bar{\boldsymbol{X}}_{\boldsymbol{w}}) (\boldsymbol{X}_i - \bar{\boldsymbol{X}}_{\boldsymbol{w}})^\top - \mathbf{I}_p \right\|_{sp}^2 \le \tau \right\}.$$

with
$$\tau = C(\frac{p}{n} + \varepsilon^2 \log(1/\varepsilon) + \frac{\log(1/\delta)}{n})$$
.

• With probability $\geq 1 - \delta$,

Does it really terminate in polynomial time?

separate w from w^* .

- no lower bound on $vol(\Omega^*)$,
- no separation between ${\boldsymbol w}$ and Ω^* .

5. Robust estimation by the spectral method

Finite sample guarantees

Theorem 4 (Lai et al., 2016)

There are constants $\alpha,c,C>0$ such that, for every $\varepsilon\leq c$, in an event of probability $\geq 1-1/p^{\alpha}$, the *spectral method for robust estimation* runs in $\operatorname{poly}(n,p,1/\varepsilon)$ -time and outputs a vector $\widehat{\boldsymbol{\mu}}_n^{\operatorname{Sp}}$ such that

$$\|\widehat{\boldsymbol{\mu}}_n^{\mathrm{Sp}} - \boldsymbol{\mu}^*\|_2^2 \le C \left(\frac{p(\log p)^2 \log n}{n} + \varepsilon^2 \log p\right).$$

- Valid for $\mathcal{M}_n^{\mathrm{AC}}(p,\varepsilon,\boldsymbol{\mu}^*)$.
- Overall complexity: $O(np^2)$.

Dalalyan, A.S. Dec 18, 2018

Finite sample guarantees

Theorem 4 (Lai et al., 2016)

There are constants $\alpha,c,C>0$ such that, for every $\varepsilon\leq c$, in an event of probability $\geq 1-1/p^{\alpha}$, the *spectral method for robust estimation* runs in $\operatorname{poly}(n,p,1/\varepsilon)$ -time and outputs a vector $\widehat{\boldsymbol{\mu}}_n^{\operatorname{Sp}}$ such that

$$\|\widehat{\boldsymbol{\mu}}_n^{\mathrm{Sp}} - \boldsymbol{\mu}^*\|_2^2 \le C \left(\frac{p(\log p)^2 \log n}{n} + \varepsilon^2 \log p\right).$$

- Valid for $\mathcal{M}_n^{\mathrm{AC}}(p,\varepsilon,\boldsymbol{\mu}^*)$.
- Overall complexity: $O(np^2)$.
- Extra factors $(\log p)^2 \log n$ and $\log p$.

Dalalyan, A.S. Dec 18, 2018

Finite sample guarantees

Theorem 4 (Lai et al., 2016)

There are constants $\alpha,c,C>0$ such that, for every $\varepsilon\leq c$, in an event of probability $\geq 1-1/p^{\alpha}$, the *spectral method for robust estimation* runs in $\operatorname{poly}(n,p,1/\varepsilon)$ -time and outputs a vector $\widehat{\boldsymbol{\mu}}_n^{\operatorname{Sp}}$ such that

$$\|\widehat{\boldsymbol{\mu}}_n^{\mathrm{Sp}} - \boldsymbol{\mu}^*\|_2^2 \le C \left(\frac{p(\log p)^2 \log n}{n} + \varepsilon^2 \log p\right).$$

- Valid for $\mathcal{M}_n^{\mathrm{AC}}(p,\varepsilon,\boldsymbol{\mu}^*)$.
- Overall complexity: $O(np^2)$.
- Extra factors $(\log p)^2 \log n$ and $\log p$.
- ullet The decay of the probability is polynomial in p (versus exponential for other methods).

Dalalyan, A.S. Dec 18, 2018

The algorithm

Start by data-splitting $X_{1:n} = \mathcal{D}_1, \dots, \mathcal{D}_k$ with $k = [\log_2 p]$.

The algorithm

Start by data-splitting $X_{1:n} = \mathcal{D}_1, \dots, \mathcal{D}_k$ with $k = [\log_2 p]$.

1 Define $\widehat{\mu}_n^{\mathrm{Sp}}$ on a subspace V_1 of dimension p/2 using \mathcal{D}_1 .

The algorithm

Start by data-splitting $X_{1:n} = \mathcal{D}_1, \dots, \mathcal{D}_k$ with $k = [\log_2 p]$.

1 Define $\widehat{\mu}_n^{\mathrm{Sp}}$ on a subspace V_1 of dimension p/2 using \mathcal{D}_1 .

2 Define $\widehat{\mu}_n^{\mathrm{Sp}}$ on a subspace $V_2 \subset V_1^{\perp}$ of dimension p/4 using \mathcal{D}_2 .

The algorithm

Start by data-splitting $X_{1:n} = \mathcal{D}_1, \dots, \mathcal{D}_k$ with $k = [\log_2 p]$.

1 Define $\widehat{\mu}_n^{\mathrm{Sp}}$ on a subspace V_1 of dimension p/2 using \mathcal{D}_1 .

2 Define $\widehat{\boldsymbol{\mu}}_n^{\mathrm{Sp}}$ on a subspace $V_2 \subset V_1^{\perp}$ of dimension p/4 using \mathcal{D}_2 .

3 ... so on...

The algorithm

Start by data-splitting $X_{1:n} = \mathcal{D}_1, \dots, \mathcal{D}_k$ with $k = [\log_2 p]$.

1 Define $\widehat{\mu}_n^{\mathrm{Sp}}$ on a subspace V_1 of dimension p/2 using \mathcal{D}_1 .

2 Define $\widehat{\mu}_n^{\mathrm{Sp}}$ on a subspace $V_2 \subset V_1^{\perp}$ of dimension p/4 using \mathcal{D}_2 .

- 3 ... so on...
- 4 Define $\widehat{\mu}_n^{\operatorname{Sp}}$ on $V_k = (V_1 \oplus \ldots \oplus V_{k-1})^{\perp}$ using \mathcal{D}_k .

Dalalyan, A.S. Dec 18, 2018

The algorithm

Start by data-splitting $X_{1:n} = \mathcal{D}_1, \dots, \mathcal{D}_k$ with $k = [\log_2 p]$.

1 Define $\widehat{\mu}_n^{\mathrm{Sp}}$ on a subspace V_1 of dimension p/2 using \mathcal{D}_1 .

2 Define $\widehat{\boldsymbol{\mu}}_n^{\mathrm{Sp}}$ on a subspace $V_2 \subset V_1^{\perp}$ of dimension p/4 using \mathcal{D}_2 .

- 3 ... so on...
- 4 Define $\widehat{\mu}_n^{\mathrm{Sp}}$ on $V_k = (V_1 \oplus \ldots \oplus V_{k-1})^{\perp}$ using \mathcal{D}_k .
 - Compute the median of $\{\Pi_{V_k} X : X \in \mathcal{D}_k\}$

Dalalyan, A.S. Dec 18, 2018

The algorithm

Start by data-splitting $X_{1:n} = \mathcal{D}_1, \dots, \mathcal{D}_k$ with $k = [\log_2 p]$.

- 1 Define $\widehat{\mu}_n^{\mathrm{Sp}}$ on a subspace V_1 of dimension p/2 using \mathcal{D}_1 .
 - $\mathcal{D}_1' := \mathcal{D}_1 \setminus \{ \boldsymbol{X} : \| \boldsymbol{X} \mathsf{Med}(\mathcal{D}_1) \|_2 > C\sqrt{p \log n} \}.$

2 Define $\widehat{\boldsymbol{\mu}}_n^{\mathrm{Sp}}$ on a subspace $V_2 \subset V_1^{\perp}$ of dimension p/4 using \mathcal{D}_2 .

- 3 ... so on...
- 4 Define $\widehat{\mu}_n^{\mathrm{Sp}}$ on $V_k = (V_1 \oplus \ldots \oplus V_{k-1})^{\perp}$ using \mathcal{D}_k .
 - Compute the median of $\{\Pi_{V_k} X : X \in \mathcal{D}_k\}$

Dalalyan, A.S. Dec 18, 2018

The algorithm

Start by data-splitting $X_{1:n} = \mathcal{D}_1, \dots, \mathcal{D}_k$ with $k = \lceil \log_2 p \rceil$.

- 1 Define $\widehat{\mu}_n^{\mathrm{Sp}}$ on a subspace V_1 of dimension p/2 using \mathcal{D}_1 .
 - $\mathcal{D}'_1 := \mathcal{D}_1 \setminus \{X : \|X \mathsf{Med}(\mathcal{D}_1)\|_2 > C\sqrt{p \log n}\}.$
 - Compute the SVD of the $Cov(\mathcal{D}'_1)$.

2 Define $\widehat{\mu}_n^{\operatorname{Sp}}$ on a subspace $V_2 \subset V_1^{\perp}$ of dimension p/4 using \mathcal{D}_2 .

- 3 ... so on...
- 4 Define $\widehat{\boldsymbol{\mu}}_n^{\mathrm{Sp}}$ on $V_k = (V_1 \oplus \ldots \oplus V_{k-1})^{\perp}$ using \mathcal{D}_k .
 - Compute the median of $\{\Pi_{V_k} X : X \in \mathcal{D}_k\}$

Dec 18, 2018

The algorithm

Start by data-splitting $X_{1:n} = \mathcal{D}_1, \dots, \mathcal{D}_k$ with $k = [\log_2 p]$.

- 1 Define $\widehat{\mu}_n^{\mathrm{Sp}}$ on a subspace V_1 of dimension p/2 using \mathcal{D}_1 .
 - $\bullet \ \mathcal{D}_1' := \mathcal{D}_1 \setminus \{ \boldsymbol{X} : \| \boldsymbol{X} \mathsf{Med}(\mathcal{D}_1) \|_2 > C \sqrt{p \log n} \}.$
 - Compute the SVD of the $Cov(\mathcal{D}'_1)$.
 - Let V_1 be the subspace of p/2 smallest eigenvectors.
- 2 Define $\widehat{\mu}_n^{\mathrm{Sp}}$ on a subspace $V_2 \subset V_1^{\perp}$ of dimension p/4 using \mathcal{D}_2 .

- 3 ... so on...
- 4 Define $\widehat{\mu}_n^{\mathrm{Sp}}$ on $V_k = (V_1 \oplus \ldots \oplus V_{k-1})^{\perp}$ using \mathcal{D}_k .
 - Compute the median of $\{\Pi_{V_k} X : X \in \mathcal{D}_k\}$

Dalalyan, A.S. Dec 18, 2018

The algorithm

Start by data-splitting $X_{1:n} = \mathcal{D}_1, \dots, \mathcal{D}_k$ with $k = [\log_2 p]$.

- 1 Define $\widehat{\mu}_n^{\mathrm{Sp}}$ on a subspace V_1 of dimension p/2 using \mathcal{D}_1 .
 - $\bullet \ \mathcal{D}_1' := \mathcal{D}_1 \setminus \{ \boldsymbol{X} : \| \boldsymbol{X} \mathsf{Med}(\mathcal{D}_1) \|_2 > C \sqrt{p \log n} \}.$
 - Compute the SVD of the $Cov(\mathcal{D}'_1)$.
 - Let V_1 be the subspace of p/2 smallest eigenvectors.
 - Set $\Pi_{V_1}(\widehat{\boldsymbol{\mu}}^{\operatorname{Sp}}) := \operatorname{\mathsf{Mean}}(\Pi_{V_1}\mathcal{D}_1')$ and $\mathcal{D}_2' := \Pi_{V_1^\perp}\mathcal{D}_2.$
- 2 Define $\widehat{\boldsymbol{\mu}}_n^{\mathrm{Sp}}$ on a subspace $V_2 \subset V_1^{\perp}$ of dimension p/4 using \mathcal{D}_2 .

- 3 ... so on...
- 4 Define $\widehat{\mu}_n^{\mathrm{Sp}}$ on $V_k = (V_1 \oplus \ldots \oplus V_{k-1})^{\perp}$ using \mathcal{D}_k .
 - Compute the median of $\{\Pi_{V_k} X : X \in \mathcal{D}_k\}$

Dalalyan, A.S. Dec 18, 2018

The algorithm

Start by data-splitting $X_{1:n} = \mathcal{D}_1, \dots, \mathcal{D}_k$ with $k = [\log_2 p]$.

- 1 Define $\widehat{\mu}_n^{\mathrm{Sp}}$ on a subspace V_1 of dimension p/2 using \mathcal{D}_1 .
 - $\mathcal{D}_1' := \mathcal{D}_1 \setminus \{ \boldsymbol{X} : \| \boldsymbol{X} \mathsf{Med}(\mathcal{D}_1) \|_2 > C\sqrt{p \log n} \}.$
 - Compute the SVD of the $Cov(\mathcal{D}'_1)$.
 - Let V_1 be the subspace of p/2 smallest eigenvectors.
 - Set $\Pi_{V_1}(\widehat{\boldsymbol{\mu}}^{\operatorname{Sp}}) := \operatorname{\mathsf{Mean}}(\Pi_{V_1}\mathcal{D}_1')$ and $\mathcal{D}_2' := \Pi_{V_1^\perp}\mathcal{D}_2.$
- 2 Define $\widehat{\boldsymbol{\mu}}_n^{\mathrm{Sp}}$ on a subspace $V_2 \subset V_1^{\perp}$ of dimension p/4 using \mathcal{D}_2 .
 - $\bullet \ \mathcal{D}_2'' := \mathcal{D}_2' \setminus \{ \boldsymbol{X} \in V_1^\perp : \| \boldsymbol{X} \mathsf{Med}(\mathcal{D}_2') \|_2 > C \sqrt{p \log n} \}.$
 - Compute the SVD of the $Cov(\mathcal{D}_2'')$.
 - Let V_2 be the subspace of p/4 smallest eigenvectors.
 - $\bullet \ \mathsf{Set} \ \Pi_{V_2}(\widehat{\boldsymbol{\mu}}^{\operatorname{Sp}}) := \mathsf{Mean}(\Pi_{V_2}\mathcal{D}_2'') \ \mathsf{and} \ \mathcal{D}_3' := \Pi_{(V_1 \oplus V_2)^\perp}\mathcal{D}_2.$
- 3 ... so on...
- 4 Define $\widehat{\mu}_n^{\mathrm{Sp}}$ on $V_k = (V_1 \oplus \ldots \oplus V_{k-1})^{\perp}$ using \mathcal{D}_k .
 - Compute the median of $\{\Pi_{V_k} X : X \in \mathcal{D}_k\}$

Dalalyan, A.S. Dec 18, 2018

Parameter contamination

Some notation

• We observe X_1, \dots, X_n in \mathbb{R}^p such that

$$oldsymbol{X}_i = oldsymbol{\mu}^* + oldsymbol{ heta}_i^* + oldsymbol{\xi}_i, \quad oldsymbol{\xi}_i \overset{ ext{iid}}{\sim} \mathcal{N}_p(\mathbf{0}, \mathbf{I}_p).$$

- Goal: estimate the vector μ^* .
- Sparsity assumption: most vectors θ_i^* are equal to zero.
- $S = \{i : \|\boldsymbol{\theta}_i^*\|_2 > 0\}$ is considered as the set of outliers.
- Vectors θ_i are unknown nuisance parameters.
- Matrix notation: $\mathbf{X} = \boldsymbol{\mu}^* \mathbf{1}_n^\top + \boldsymbol{\Theta}^* + \boldsymbol{\xi}.$
- Auxiliary problem: estimate $L_n(\Theta^*) = \frac{1}{n} \sum_{i=1}^n \theta_i^*$.

Naive idea: Group-lasso estimator

 Group lasso (Chesneau and Hebiri, 2008; Lin and Zhang, 2006; Lounici, Pontil, van de Geer, and Tsybakov, 2011; Meier, van de Geer, and Bühlmann, 2009; Yuan and Lin, 2006):

$$(\widehat{\boldsymbol{\mu}},\widehat{\boldsymbol{\Theta}}) \in \arg\min_{\boldsymbol{\mu},\boldsymbol{\Theta}} \Big\{ \sum_{i=1}^n \|\boldsymbol{X}_i - \boldsymbol{\mu} - \boldsymbol{\theta}_i\|_2^2 + \sum_{i=1}^n \lambda_i \|\boldsymbol{\theta}_i\|_2 \Big\}.$$

• The above optimization problem is convex and can be solved efficiently even when p and n are large. $\widehat{\mu}$ is exactly the Huber M-estimator (Donoho and Montanari, 2016).

Theorem

If $s \le n/32$ and $\lambda_i = 6\sqrt{p}$, then, with prob. $\ge 1 - \delta$,

$$\|\boldsymbol{L}_n(\widehat{\boldsymbol{\Theta}}) - \boldsymbol{L}_n(\boldsymbol{\Theta}^*)\|_2^2 \lesssim \varepsilon^2 p, \quad \|\widehat{\boldsymbol{\mu}} - \boldsymbol{\mu}^*\|_2^2 \lesssim \frac{p}{n} + \varepsilon^2 p + \frac{\log(2/\delta)}{n}.$$

Dalalyan, A.S. Dec 18, 2018

Group lasso:

$$(\widehat{oldsymbol{\mu}},\widehat{oldsymbol{\Theta}}) \in rg \min_{oldsymbol{\mu},oldsymbol{\Theta}} \Big\{ \sum_{i=1}^n \|oldsymbol{X}_i - oldsymbol{\mu} - oldsymbol{ heta}_i\|_2^2 + \sum_{i=1}^n \lambda_i \|oldsymbol{ heta}_i\|_2 \Big\}.$$

Dalalyan, A.S. Dec 18, 2018

Group lasso:

$$(\widehat{\boldsymbol{\mu}},\widehat{\boldsymbol{\Theta}}) \in \arg\min_{\boldsymbol{\mu},\boldsymbol{\Theta}} \Big\{ \sum_{i=1}^n \|\boldsymbol{X}_i - \boldsymbol{\mu} - \boldsymbol{\theta}_i\|_2^2 + \sum_{i=1}^n \lambda_i \|\boldsymbol{\theta}_i\|_2 \Big\}.$$

We have

$$\widehat{\boldsymbol{\mu}} = \arg\min_{\boldsymbol{\mu}} \left\{ \sum_{i=1}^{n} \|\boldsymbol{X}_i - \boldsymbol{\mu} - \widehat{\boldsymbol{\Theta}}_i\|_2^2 \right\} = L_n(\mathbf{X}) - L_n(\widehat{\boldsymbol{\Theta}}).$$

Dalalyan, A.S. Dec 18, 2018

Group lasso:

$$(\widehat{oldsymbol{\mu}},\widehat{oldsymbol{\Theta}}) \in rg \min_{oldsymbol{\mu},oldsymbol{\Theta}} \Big\{ \sum_{i=1}^n \|oldsymbol{X}_i - oldsymbol{\mu} - oldsymbol{ heta}_i\|_2^2 + \sum_{i=1}^n \lambda_i \|oldsymbol{ heta}_i\|_2 \Big\}.$$

We have

$$\widehat{\boldsymbol{\mu}} = \arg\min_{\boldsymbol{\mu}} \left\{ \sum_{i=1}^{n} \|\boldsymbol{X}_i - \boldsymbol{\mu} - \widehat{\boldsymbol{\Theta}}_i\|_2^2 \right\} = L_n(\mathbf{X}) - L_n(\widehat{\boldsymbol{\Theta}}).$$

• If we set $oldsymbol{Z}_i = oldsymbol{X}_i - ig\{L_n(oldsymbol{\mathrm{X}}) - L_n(\widehat{oldsymbol{\Theta}})ig\}$, we get

$$\widehat{\boldsymbol{\Theta}} \in \arg \min_{\boldsymbol{\Theta}} \Big\{ \sum_{i=1}^{n} \|\boldsymbol{Z}_{i} - \boldsymbol{\theta}_{i}\|_{2}^{2} + \sum_{i=1}^{n} \lambda_{i} \|\boldsymbol{\theta}_{i}\|_{2} \Big\}$$

which is the group-soft-thresholding (GST) estimator applied to Z.

Dalalyan, A.S. Dec 18, 2018

Group lasso:

$$(\widehat{oldsymbol{\mu}},\widehat{oldsymbol{\Theta}}) \in rg \min_{oldsymbol{\mu},oldsymbol{\Theta}} \Big\{ \sum_{i=1}^n \|oldsymbol{X}_i - oldsymbol{\mu} - oldsymbol{ heta}_i\|_2^2 + \sum_{i=1}^n \lambda_i \|oldsymbol{ heta}_i\|_2 \Big\}.$$

We have

$$\widehat{\boldsymbol{\mu}} = \arg\min_{\boldsymbol{\mu}} \left\{ \sum_{i=1}^{n} \|\boldsymbol{X}_i - \boldsymbol{\mu} - \widehat{\boldsymbol{\Theta}}_i\|_2^2 \right\} = L_n(\mathbf{X}) - L_n(\widehat{\boldsymbol{\Theta}}).$$

• If we set $\boldsymbol{Z}_i = \boldsymbol{X}_i - \left\{L_n(\mathbf{X}) - L_n(\widehat{\boldsymbol{\Theta}})\right\}$, we get

$$\widehat{\boldsymbol{\Theta}} \in \arg \min_{\boldsymbol{\Theta}} \Big\{ \sum_{i=1}^{n} \|\boldsymbol{Z}_{i} - \boldsymbol{\theta}_{i}\|_{2}^{2} + \sum_{i=1}^{n} \lambda_{i} \|\boldsymbol{\theta}_{i}\|_{2} \Big\}$$

which is the group-soft-thresholding (GST) estimator applied to Z.

• Some prior work on linear functional estimation suggests to choose

$$\lambda_i = \frac{2p^{1/4} \|\boldsymbol{Z}_i\|_2}{(\|\boldsymbol{Z}_i\|_2^2 - p)_\perp^{1/2}}.$$

Unfortunately, we can not do that since Z depends on $\widehat{\Theta}$.

Dalalyan, A.S. Dec 18, 2018

Iterative group soft thresholding Algorithm

Algorithm of IGST

- Start with an estimator $\widehat{\Theta}^0$, for instance, group lasso.
- for $k = 1, \ldots, K$, do

1)
$$oldsymbol{Z}_i = oldsymbol{X}_i - ig\{L_n(\mathbf{X}) - L_n(\widehat{oldsymbol{\Theta}}^{k-1})ig\}$$
 ,

2)
$$\lambda_i = \frac{2p^{1/4} \|\boldsymbol{Z}_i\|_2}{(\|\boldsymbol{Z}_i\|_2^2 - p)_+^{1/2}},$$

3)
$$\widehat{\boldsymbol{\Theta}}_{i}^{k} = \mathsf{GST}(\boldsymbol{Z}_{i}, \lambda_{i}).$$

Final estimator:

$$\widehat{\boldsymbol{\mu}}^{\mathrm{IGST}} = L_n(\mathbf{X}) - L_n(\widehat{\boldsymbol{\Theta}}^K).$$

Risk bound

Theorem 5 (Collier and Dalalyan, 2017)

Let $\nu > 0$ and assume the IGST estimator is run for

 $K = \log_2(1/\nu) + \log\log p$ iterations.

There are constants c,C>0 such that for every $\varepsilon\leq c$, in an event of probability $\geq 1-e^{-p/8}$, the IGST estimator satisfies

$$\|\widehat{\boldsymbol{\mu}}^{\text{IGST}} - \boldsymbol{\mu}\|_{2}^{2} \le C\left(\frac{p}{n} + \varepsilon^{2} + \left(p\varepsilon^{4}\right)^{1-\nu}\right).$$

Dalalyan, A.S. Dec 18, 2018

Risk bound

Theorem 5 (Collier and Dalalyan, 2017)

Let $\nu>0$ and assume the IGST estimator is run for

 $K = \log_2(1/\nu) + \log\log p$ iterations.

There are constants c,C>0 such that for every $\varepsilon\leq c$, in an event of probability $\geq 1-e^{-p/8}$, the IGST estimator satisfies

$$\|\widehat{\boldsymbol{\mu}}^{\text{IGST}} - \boldsymbol{\mu}\|_{2}^{2} \le C\left(\frac{p}{n} + \varepsilon^{2} + \left(p\varepsilon^{4}\right)^{1-\nu}\right).$$

• Valid for $\mathcal{M}_n^{\mathrm{PC}}(p,\varepsilon,\boldsymbol{\mu}^*)$.

Dalalyan, A.S. Dec 18, 2018

Risk bound

Theorem 5 (Collier and Dalalyan, 2017)

Let $\nu > 0$ and assume the IGST estimator is run for $K = \log_2(1/\nu) + \log\log p$ iterations.

There are constants c,C>0 such that for every $\varepsilon\leq c$, in an event of probability $\geq 1-e^{-p/8}$, the IGST estimator satisfies

$$\|\widehat{\boldsymbol{\mu}}^{\text{IGST}} - \boldsymbol{\mu}\|_{2}^{2} \le C\left(\frac{p}{n} + \varepsilon^{2} + \left(p\varepsilon^{4}\right)^{1-\nu}\right).$$

- Valid for $\mathcal{M}_n^{\mathrm{PC}}(p,\varepsilon,\boldsymbol{\mu}^*)$.
- Overall complexity $O(np \log \log p)$

Dalalyan, A.S. Dec 18, 2018

Risk bound

Theorem 5 (Collier and Dalalyan, 2017)

Let $\nu > 0$ and assume the IGST estimator is run for $K = \log_2(1/\nu) + \log\log p$ iterations.

There are constants c,C>0 such that for every $\varepsilon\leq c$, in an event of probability $\geq 1-e^{-p/8}$, the IGST estimator satisfies

$$\|\widehat{\boldsymbol{\mu}}^{\text{IGST}} - \boldsymbol{\mu}\|_{2}^{2} \le C\left(\frac{p}{n} + \varepsilon^{2} + \left(p\varepsilon^{4}\right)^{1-\nu}\right).$$

- Valid for $\mathcal{M}_n^{\mathrm{PC}}(p,\varepsilon,\boldsymbol{\mu}^*)$.
- Overall complexity $O(np \log \log p)$
- Exponential in p decay of probability.

Dalalyan, A.S. Dec 18, 2018

Risk bound

Theorem 5 (Collier and Dalalyan, 2017)

Let $\nu > 0$ and assume the IGST estimator is run for $K = \log_2(1/\nu) + \log\log p$ iterations.

There are constants c,C>0 such that for every $\varepsilon\leq c$, in an event of probability $\geq 1-e^{-p/8}$, the IGST estimator satisfies

$$\|\widehat{\boldsymbol{\mu}}^{\text{IGST}} - \boldsymbol{\mu}\|_{2}^{2} \le C\left(\frac{p}{n} + \varepsilon^{2} + \left(p\varepsilon^{4}\right)^{1-\nu}\right).$$

- Valid for $\mathcal{M}_n^{\mathrm{PC}}(p,\varepsilon,\boldsymbol{\mu}^*)$.
- Overall complexity $O(np \log \log p)$
- \bullet Exponential in p decay of probability.
- The rate is optimal in the regime $\varepsilon = O(p^{-1/2} \vee n^{-1/4})$.

Dalalyan, A.S. Dec 18, 2018

Summary

- The ellipsoid method for robust estimation:
 - achieves the minimax rate on $\mathcal{M}_n^{\rm AC}(p, arepsilon, m{\mu}^*)$ up to an extra factor $\log(1/arepsilon).$
 - Complexity of 1 iteration $O(np^2)$.
 - Exponential in p decay of probability.
 - Poly number of iterations ?
- The spectral method for robust estimation:
 - achieves the minimax rate on $\mathcal{M}_n^{\mathrm{AC}}(p,\varepsilon,\mu^*)$ up to an extra factor $(\log p)^2 \log n$.
 - Overall complexity $O(np^2)$.
 - Polynomial in p decay of probability.
- The iterative group-soft-thresholding:
 - achieves the minimax rate on $\mathcal{M}_n^{\mathrm{PC}}(p,\varepsilon,\mu^*)$ without any extra factor when $\varepsilon = O(p^{-1/2} \vee n^{-1/4})$.
 - Overall complexity O(np).
 - Exponential in p decay of probability.

Dalalyan, A.S. Dec 18, 2018

References I

- Christophe Chesneau and Mohamed Hebiri. Some theoretical results on the grouped variables Lasso. <u>Math. Methods Statist.</u>, 17(4):317–326, 2008.
- Olivier Collier and Arnak S. Dalalyan. Minimax estimation of a multidimensional linear functional in sparse gaussian models and robust estimation of the mean. submitted 1712.05495, arXiv, December 2017. URL https://arxiv.org/abs/1712.05495.
- Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, and Alistair Stewart. Robust estimators in high dimensions without the computational intractability. In <u>IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, USA</u>, pages 655–664, 2016.
- David Donoho and Andrea Montanari. High dimensional robust m-estimation: asymptotic variance via approximate message passing. Probability Theory and Related Fields, 166(3):935–969, Dec 2016.
- K. A. Lai, A. B. Rao, and S. Vempala. Agnostic estimation of mean and covariance. In <u>2016 IEEE 57th Annual Symposium on Foundations of</u> Computer Science (FOCS), pages 665–674, Oct 2016.

Dalalyan, A.S. Dec 18, 2018

References II

- Yi Lin and Hao Helen Zhang. Component selection and smoothing in multivariate nonparametric regression. <u>Ann. Statist.</u>, 34(5):2272–2297, 2006.
- Karim Lounici, Massimiliano Pontil, Sara van de Geer, and Alexandre B. Tsybakov. Oracle inequalities and optimal inference under group sparsity. <u>Ann. Statist.</u>, 39(4):2164–2204, 2011.
- Lukas Meier, Sara van de Geer, and Peter Bühlmann. High-dimensional additive modeling. Ann. Statist., 37(6B):3779–3821, 2009.
- Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. <u>J. R. Stat. Soc. Ser. B Stat. Methodol.</u>, 68(1):49–67, 2006.

Dalalyan, A.S. Dec 18, 2018