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Classical procedures (Perceptron, Logistic regression, SVM):

Perceptron: 0.528 Logistic Regression: 0.648 Linear SVM: 0.642
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Their MOM (Median Of Means) version:

Perceptron MOM: 0.8  Logistic Regression MOM: 0.826  Linear KLR MOM: 0.82
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» Huge datasets are likely to be corrupted by outliers
> heavy-tailed data are common in practice (like in finance)

> Robust theory has been a central issue for a long time

Huber's loss function has been designed for that

N

A 1 t2 if [t] <k

t — (Yi— (X, t h () = . .
€ art%?;dm N ;:1/) (Yi=(Xi, t)) where p,(t) { 2k|t] — k2 i [t] > k.

is robust to outliers in the Y;’s but not in the X;’s.

[Huber and Ronchetti, "Robust Statistics"]:

..we can act as if the X;'s are free of gross error

The leverage point problem

Construct procedures robust to outliers in the X;'s
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A benchmark result: Let (X, ;)" be
> iid. ~(X,Y)
> Y = (X, t*)+ ¢ where X ~ N(0, lgxq) and ¢ ~ N(0,52) ind. of X,
then OLS t € argmin Z,{V:l(Y; — (X, t))? satisfies with probability at
teRd
least 1 — ¢y exp(—c1d),
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when N 2 d.

Is it possible to construct an estimator satisfying the very same
result when 1) the dataset is corrupted by outliers and 2) under
weak moment assumption
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From i.i.d. to the @ U Z framework

Aim: (X, Y) ar.v., estimate t* € argmin E(Y — (X, 1))
teRd
Dataset:

{(Xe, Y1), -+, (X, Y) ) = {(X5, Vi) }ieo U{(Xi, Yi)}iez

where:
» O stands for outliers: no assumption on the (X, Y;),i € O
» 7 stands for informative:

1. (Xi, Yi)iez are independent
2. VieI teR?,

E(X;, t)* = E(X, t)* and E(Y; — (X;,t))? = E(Y — (X, t))?
> (=Y — (X, t*), assume that ¥t € RY, var(¢(X, t)) < o?E(X, t)?

> vt e RY (X )|, <o |[(X. )],
(small ball assumption from [Koltchinskii & Mendelson])
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Result for the MOM OLS

In the O UZ framework, the MOM OLS %, with number of blocks K = d

where
ty € argmin sup MOMy—q(¢; — £4/)
teRd  t/eRd

is such that with probability at least 1 — ¢g exp(—c1d),

. 24
[P

when N > d and d = |O|.

It is possible to recover the same result in the O UZ framework as
in the i.i.d. Gaussian with independent noise framework.
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Refs:
* [Nemirovsky, Yudin. 1983]
* [Jerrum, Valiant, Vazirani. 1986]
* [Alon, Matias, Szegedy. 1999]
* [Devroye, Lerasle, Lugosi, Oliveira. 2016]

Key idea: MOMy(Z) is a subgaussian estimator of EZ under a
Lr-moment assumption: if [[Z]|,, < oo then with probability at least

1— coexp(—aK),
K
[MOMK(2) ~EZ| £ 0/ 3.

Adaptation to K via a Lepski's method:
> T = [MOMK(Z) — 0/K/N, MOMk(Z) + a\/m}
» K =min (K AN T # (Z))

> i € ﬁQI:RIk
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Construction of MOM estimators |Il: MOM's principle

Aim: We are given:
» (X,Y), F and f* € argmin R(f) where R(f) = El¢(X, Y) like
feF

le(x,y) = (y = F(x))%, log(1 + ")), (1 = yf (), puly — f(x))
> (X1, Y1),...,(Xn, Yn) some data.
We want to

. 2
» Estimate f*: w.h.p. Hf —f* < rate
Ly

A

> Predict Y: w.h.p. R(f) <infrcr R(f) + residue

Classical approach via ERM: f € argmin Ry(f) where
feF

N
1
Rn(f) = Pnlr = N E Le(Xi, Vi)
i=1

Main idea

Replace the (non-robust) empirical mean Pp¢r by a MOM
MOM (4f) to estimate R(f) = Pts
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Aims: (X,Y), estimate f* € argmin E(Y — f(X))? and predict Y
feF
The O UZ framework:

{(X1, Y1), -+, (Xnv, Y} = {(Xi, Yi) Hieo U{(X, Yi) tier

where:
» no assumption on the (X, Y;),i € O
» on the informative data:

1. (Xi, Yi)iez are independent
2.Viel,feF IF(Xi) = £ (XD, = [IF(X) = £ (X)),
IY;i = £, = 1Y = F(X)I,

> (=Y — f*(X), we assume that for all f € F
var(C(F(X) — £(X))) < a*E(F(X) — (X))’

> VfeF, |

FOXG) = (X, < O lIF(X5) = £ (X)), (SBA)



Minmax MOM estimator. Statistical properties Il

Two fixed points measuring the complexity of the problem:

N
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Two fixed points measuring the complexity of the problem:

N
ro(vg) =inf¢r>0:VJCZ,|J]| > X E sup Ze,-g(X,-)
el <r

< voldlr

ied

N
ma(ym) =infQr>0:VICL > 5, B sup | eiig(X)
gl <r

< yumlJ|r?

ied

where ¢; = Y; — F*(X;).
Let
r* = max{ro(vq), rm(Ym)}

(r*)? is the minimax rate of convergence in the i.i.d. framework with

Gaussian design and Gaussian noise independent of the design [L. &
Mendelson].
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In the OUZ framework. Let K € [max(N(r*)?/o?,|O]), N]. With
probability at least 1 — ¢y exp(—c1 K), the minmax MOM estimator

fi € argmin sup MOM (¢r — L)

feF g€F
satisfies
H? I < 2K and R(F«) < inf R(f) + Eonil
= — | =
K L= 2N K) = fer N

In particular, for K = max(N(r*)?,]0]),

- L2 - ) o 02O
fx — L’ R(fx) — flgl; R(f) < ca max ((r )% /|V|>

= c4(r*)? (the minimax rate) when o2|O] < N(r*)2.
(then, adaptation to K via Lepski's method).
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Regularized minmax MOM estimators

f € argmin sup MOMxk (¢r — £5) + A(|If|l — llgll)
feF geF

General results:

> sparsity oracle inequalities and sparse estimation rates (when ||-|| has
some sparsity inducing power)

» "complexity™-based oracle inequality and estimation rate (always).

Example: MOM version of the LASSO:

tx € argmin sup MOMk (¢ — L) + Mk (|1t]l; = [It']];)
teRY t’'€Rd

where £,(x,y) = (y — (x, t))? and

2d
Ak ~ 0 Iog <ch )



MOM version of the LASSO

Aim: Estimate t* € argmin E(Y — (X, 1))? w.r.t. s = [|t*|,.
teR



MOM version of the LASSO

Aim: Estimate t* € argmin E(Y — (X, 1))? w.r.t. s = [|t*|,.
teRd
The O UZ framework:

» No assumption on |O] observations s.t. |O] < N/10



MOM version of the LASSO

Aim: Estimate t* € argmin E(Y — (X, 1))? w.r.t. s = [|t*|,.
teRd
The O UZ framework:

» No assumption on |O] observations s.t. |O] < N/10

> (X, Yi)ier "X (X, Y):



MOM version of the LASSO

Aim: Estimate t* € argmin E(Y — (X, 1))? w.r.t. s = [|t*|,.
teRd
The O UZ framework:
» No assumption on |O] observations s.t. |O] < N/10
j.i.d.
> (Xi, Yi)iez "X (X, Y):
1. X is isotropic ) )
2. vt e R, p e [colog(d)], € [d]: [IX]|us < Ly/plIXD]],2



MOM version of the LASSO

Aim: Estimate t* € argmin E(Y — (X, 1))? w.r.t. s = [|t*|,.
teRd
The O UZ framework:

» No assumption on |O] observations s.t. |O] < N/10
i.i.d.
> (Xi, Yi)iez "X (X, Y):
1. X is isotropic ) )
2.Vt e R, p € e log(d)].j € [d]: IX9||is < Ly/BIIXD]l,2
3. (=Y —(X,t") € L for some qo > 2



MOM version of the LASSO

Aim: Estimate t* € argmin E(Y — (X, 1))? w.r.t. s = [|t*|,.
teR?

The O UZ framework:

» No assumption on |O] observations s.t. |O] < N/10

j.id.

> (Xi, Yiiez "< (X, Y):
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MOM version of the LASSO

Aim: Estimate t* € argmin E(Y — (X, 1))? w.r.t. s = [|t*|,.
teR?

The O UZ framework:

» No assumption on |O| observations s.t. |O] < N/10

j.id.

> (Xi, Yiiez "< (X, Y):
. X is isotropic ) )
.Vt e R p e [alog(d)],j € [d]: [|XD]|e < Ly/BIIXD|l,2
(=Y —(X,t") € L for some qo > 2
- vee R var(¢(X, 1)) < o [(X. O[5, [[(X. )|,z < 60X, )]s

In the O UZ framework. Let K € [max(slog(d/s),|O]), N]. With
probability at least 1 — ¢y exp(—c1K), the MOM LASSO tx satisfies

2K <U2s|og(d/s) 02|0|)

A WDN =

H’i'K— t*

2<c max
2=y N N

for K = max(slog(d/s),|O]). (adaptation via Lepski's method)
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Descent methods for the MOM minimizer |

Problem: u € R? — MOMj/(¢,) is not convex (in general) where
MOMy(£,) = Median( Bl > (Y= (X, u))? ‘B | > (Vi = (Xi,u)) )
i€By i€Bk

still there is a natural way to choose a descent direction:

Partition R? = C; U --- U Ck where, for all k € [K],
= {ueR?: MOMk({,) = Pglu}

Given a point u; € RY:
1. find k € [K], such that MOMk(¢,,) = Pg, L, (i.e. ur € Cy)
2. descent direction: V; := V(u = Pg{y)|u=u,
3. U1 = ur — Nt Ve
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Descent methods for the MOM minimizer |l

Rd

—ﬂov(u — PBsgfu)IUIUo
e U Ck

77]2V(U — PBkéfu)\u:uz



MOM GD = BGD

(X1, Y1)
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MOM version of the gradient
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Descent with a particular choice
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Pg,{,,

PBzéUr

P, Ly,

MOM version of the gradient
descent = Block Gradient
Descent with a particular choice
of block
1. find k € [K], s.t.
MOMk(¢,,) = Pg,ly,
2. descent direction:
V= V(U — PBkKLI)lll:Ut

3. Upy1 = U — NV



MOM GD = BGD

(Xla Yl)
(X2, Y2)
PBlgut
: MOM version of the gradient
(Xny/ks> Ynyk) descent = Block Gradient
(XN/K+1a_ Yiv/k+1) Descent with a particular choice
: of block
Pg, Ly, 1. find k € [K], s.t.
MOMk(¢,,) = Pg,ly,
2. descent direction:
Vt = V(U — PBkgL’)lU:Ur
3. Upy1 = Uy — ntvt
: PBKgllt
(Xn=1, Yn-1)
(Xn, Yn)

Idea: Choose the descent block according to its centrality via the median
operator ("remove outliers” and closer to E/Z,,.).
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Pb of local minima => Random blocks

Local minima if a cell Cx
contains a minimum from

argmin Pg, ¢,
ueRd

Ck

[ ]
better minimum

Solution: choose the blocks of data at random at every step:

1.
2. median block: Pg,¢,, = MOMk(¢,,)
3.
4

S Uyl = Uy — NtV

random partition: {1,...,N} = By U---U Bk

descent direction: V; := V(u — P, ly)|u=u,



Pb of local minima => Random blocks

Local minima if a cell Cx
contains a minimum from

argmin Pg, ¢,
ueRd

Cs Ck
better n.1inimum
Solution: choose the blocks of data at random at every step:
1. random partition: {1,...,N} =B U---U Bg
2. median block: Pg,¢,, = MOMk(¢,,)
3. descent direction: V; := V(v — Pg{y)|u=y,
4. Uy = Uy — MV

MOM GD with random blocks = BSGD with a particular choice of
the descent blocks



Convergence of the MOM GD with random blocks

Let Dy = {(X;, Y;)V,}. Assume that
L Hvugu(x>y)||2 S L
2. 0 € argmin Epg,u...u, [MOMk(¢,)|Dp] is such that Ve > 0,
ueRd

inf (& — u,E[V,ly(x,y)|Dn]) >0

Hﬁ—UHzZE

3.3, m2 <ooand >, mr =00

4. for Ag-almost all u € RY, there exists an open set B such
that u € B and for all partition ByU---UBk and v € B, ¢,
and ¢, have the same median block.

Then, for almost all dataset Dy,

lur — fl, === 0
T—o0
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Idea: Alternate between ascent (for the max) and descent (for the min).
Example for the minmax MOM version of the LASSO:

o € argmin sup MOMk (€, — Cy) + Ak (|Jully — [|¢']];)
ueR?d  u'eR?
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A descent/ascent algorithm for the minmax MOM
estimator

Idea: Alternate between ascent (for the max) and descent (for the min).
Example for the minmax MOM version of the LASSO:

o € argmin sup MOMk (€, — Cy) + Ak (|Jully — [|¢']];)
ueR?d  u'eR?

where £,(x,y) = (y — (x,u))? and Ak ~ o/(1/N)log (62d/K).
At iteration (uy, up) we do:

ul random partition: {1,...,N} = BiU---U Bk

u2 median block: Pg, (€4, — £y) = MOMk(£y, — Ly;)

u3 descent direction: V; := V(u = Pg,€y)|u—y, = —2X, (Yi — Xiuy)
ud uppr = proxy, .y, (Ue = n:Ve)

u'l random partition: {1,...,N} =B, U---U Bk

u'2 median block: Pg,, (y,,, —{y) = MOMxk({y,,, —Lu;)

u'3 ascent direction: V} := =V(u = Pg, ly)jyu; = 2X) (Yo — Xpou})
u'd ugy = proxy, ., (up +m:Ve)



Simulations: effect of random blocks on local minima
N =200 i.i.d. copies of (X, Y) where
Y =(X,t)+¢ X ~N(0,lyxq) ¢ ~N(0,1)ind. of X

where d =500 and ||t*||, = 20.



Simulations: effect of random blocks on local minima
N =200 i.i.d. copies of (X, Y) where
Y =(X,t)+¢ X ~N(0,lyxq) ¢ ~N(0,1)ind. of X

where d =500 and ||t*||, = 20.

Objective function Estimation error
/ 2 *
MOMic(€y — L) + Ak ([lully = ll"ly) [T —t*]l,
5000 35
— MOM ADMM
En) — MOM ADMM RANDOM BLOCKS
o i 2N
5
'é -5000 E 2
E ~10000 g 5
S [ri}
10
-15000
— MOM ADMM 5
— MOM ADMM RANDOM BLOCKS
—20000 [
0 100 200 300 400 500 o 100 200 300 400 500

Number of iterations Number of iterations



Adaptation of classical algorithms to their MOM version

Objective function Estimation error

MOMic (s = Lur) + A ([lully = [[ell;) [t -t



Adaptation of classical algorithms to their MOM version

Objective function
MOMi(€y — L) + Ak (lully = lle"ly)

Estimation error

It =1,

— MOM Subgradient Descent — MOM ISTA
20000 — MOM Nesterov Smoothing - - MOM ISTA (backtracking)

—  MOM FISTA — MOM ADMM
= - MOM FISTA (backtracking)

10000

-10000

—20000

-30000

Objactive error
Estimation Error

—40000

50000

—60000

—70000
o

100 200 300 400 500
Iteration

(non random blocks)

100

200 300 400 500
Iteration
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Test of robustness of minmax MOM estimators
Logistic Vs MOM logistic NV = 1000, d = 50, K = 100

Sklearn VS MOM logistic

05
0s
04
T —— MOM logistic
g 03 — Sklearn

0 10 €0 0 40 50
Number of outliers

LASSO Vs MOM LASSO N = 200, d = 500, s = 10, adaptive choice
of K and A

— oM LASSO
— - LAsso
012 014 ols



Choice of hyper-parameters via MOM CV

Idea: The dataset may be corrupted by outliers therefore the Classical
CV criteria cannot be trusted to choose hyper-parameters.



Choice of hyper-parameters via MOM CV

Idea: The dataset may be corrupted by outliers therefore the Classical
CV criteria cannot be trusted to choose hyper-parameters.

1. split the dataset into V disjoints blocks Dy, ..., Dy



Choice of hyper-parameters via MOM CV

Idea: The dataset may be corrupted by outliers therefore the Classical
CV criteria cannot be trusted to choose hyper-parameters.

1. split the dataset into V disjoints blocks Dy, ..., Dy

2. Vv € [V], Uy, D, is used to train a family of estimators

F0) (%,g; K €Gk, N € gA) . (1)



Choice of hyper-parameters via MOM CV

Idea: The dataset may be corrupted by outliers therefore the Classical
CV criteria cannot be trusted to choose hyper-parameters.

1. split the dataset into V disjoints blocks Dy, ..., Dy

2. Vv € [V], Uyz,/D, is used to train a family of estimators

F0) (%,g; K €Gk, N € gA) . (1)

3. The remaining D, of the dataset is used to test the performance of
each estimator in F(V)



Choice of hyper-parameters via MOM CV

Idea: The dataset may be corrupted by outliers therefore the Classical
CV criteria cannot be trusted to choose hyper-parameters.

1. split the dataset into V disjoints blocks Dy, ..., Dy

2. Vv € [V], Uyz,/D, is used to train a family of estimators

F0) (%,g; K €Gk, N € gA) . (1)

3. The remaining D, of the dataset is used to test the performance of
each estimator in F()

4. BMU-..UBY is a partition of the test set D, into K’ blocks



Choice of hyper-parameters via MOM CV

Idea: The dataset may be corrupted by outliers therefore the Classical
CV criteria cannot be trusted to choose hyper-parameters.

1. split the dataset into V disjoints blocks Dy, ..., Dy

2. Vv € [V], Uy, D, is used to train a family of estimators

F0) (%,g; K €Gk, N € gA) . (1)

3. The remaining D, of the dataset is used to test the performance of
each estimator in F(*)

4. BMU...uBY is a partition of the test set D, into K’ blocks

5. forall v € [V]and f € FV),

1\[01\1%) () = Median <PBiv)€f, cee PB,(Z/)E'(> (2)



Choice of hyper-parameters via MOM CV

Idea: The dataset may be corrupted by outliers therefore the Classical
CV criteria cannot be trusted to choose hyper-parameters.

1.
2.

split the dataset into V disjoints blocks Dy, ..., Dy
Vv € [V], Uux Dy is used to train a family of estimators

F0) (%,g; K €Gk, N € gA) . (1)
The remaining D, of the dataset is used to test the performance of
each estimator in F()

BM U-..UBY is a partition of the test set D, into K’ blocks
forall v € [V] and f € F"),

1\[01\{%) () = Median <PBiv)€f, cee PB;(<V/)€)(> (2)

(K, \) minimizes the MomCvy criteria
K,
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Choice of hyper-parameters via MOM CV

Idea: The dataset may be corrupted by outliers therefore the Classical
CV criteria cannot be trusted to choose hyper-parameters.

1.
2.

split the dataset into V disjoints blocks Dy, ..., Dy
Vv € [V], Uux Dy is used to train a family of estimators

F0) (%,g; K €Gk, N € gA) . (1)
The remaining D, of the dataset is used to test the performance of
each estimator in F()

BM U-..UBY is a partition of the test set D, into K’ blocks
forall v € [V] and f € F"),

1\[01\{%) () = Median <PBiv)€f, cee PB;(<V/)€)(> (2)

(K, \) minimizes the MomCvy criteria
(K, A) € GkxGx = MomCvy (K, \) = Median (MOM%) (EA(V) ) ) ,
ka/ velv]

~

return fR,S\-



Adaptively chosen number of blocks K

adaptively chosen K
=]

20 |

10+

— MOM LASSO

0.00 0.02 0.04 0.06 0.08 0.10 012 0.14 0.16
Proportion of outliers

K increases with |O|/N because we need at least K > 2|O| to make
MOM estimators working.
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An outliers detection algorithm (random blocks)

Idea: Outliers should not be selected in the median blocks along the
iterations.

Definition

For all i = 1,..., N, Score((X;, Y;)) = number of times (X;, Y;)
has been selected in a median block along the iterations.

ore: outlier_importance

1 2 170 194
data indices

outliers are data number 1, 32, 170, 194.



Thanks!



Alternating sub-gradient descent

input : (to, t)) € RY x R? : initial point
(1p)p, (Bp)p: two step size sequences
output: approximated solution to the min-max problem

1fort=1,..., T do
2 find k € [K] such that MOMK(EI‘F, _Et;,) = PBk(EtP _gté)

toy1 = tp + 277PX;<r (Vi — Xytp) — Anpsign(t,)
4 find k € [K] such that MOMk (¢4,,, — eté) = P, ({4, — Kt;)

th =t + 26,X) (Yi — Xyt,) — ABpsign(t))

6 end
7 Return (1, t,)




Alternating proximal gradient descent

input : (o, ) € RY x R? : initial point
(7k)k, (Bk)k: two step size sequences
output: approximated solution to the min-max problem

1fort=1....T do
2 find k € [K] such that MOM (¢, — Zt’/’) = Pg, (s, — €t;)

tp+]_ = prOX)\”_”l (tp + 27’]kXZ(Yk — thp))
3 find k € [K] such that MOMK(Ethrl - ét;)) = PBk(gthrl - ft;/,)

thir = Proxy ., (8 + 26kXg (Vi — X))

4 end




MOM ADMM

input : (to, ) € R? x R? : initial point. p: a parameter
output: approximated solution to the min-max problem

1fort=1,..., T do

2 find k € [K] such that MOM (¢, — Kt;:) = Pg, (s, — Et’;)
tor1 = (Xg Xic + plaxa) (X4 Yi + pzp — up)
Zp1 = ProxXy ., (tp+1 4 Up/p)

Upt1 = Up + p(tp+1 — Zp+1)

3 find k € [K] such that MOMk (¢4,,, — ét;)) = P, ({4, — Kt;)
p+1 (Xk Xk + pldxd) 1(XTY/( + le; — UI/J)

Zp11 = Proxy . (tpys + Up/p)

u;ﬂrl = up + p(tp+1 - p+1)

4 end

5 Return (1, t,)
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